
BCS-29
Advanced Computer Architecture

Instruction Set Architectures

RISC Processors

RISC vs CISC

Computer Architecture

• The term architecture is used here to describe the attribute of
a system as seen by the programmer.

• It is the conceptual structure and functional behavior as
distinct from the organization of the data-flow and control-
flow, the logic design, and the physical implementation.

• Instruction set architecture: program-visible instruction set
• Instruction format, memory addressing modes, architectural registers,

endian type, alignment, …

• EX: RISC, CISC, VLIW, EPIC

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-2

Instruction Set Architecture

• Elements of ISA

• Programming Registers

• Type and Size of Operands

• Addressing Modes

• Types of Operations

• Instruction Encoding

Dr. P K Singh MMMUT, Gorakhpur 3

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.4

Instruction Set Architecture

• Instruction set architecture is the structure of a

computer that a machine language programmer must

understand to write a correct (timing independent)

program for that machine.

• The instruction set architecture is also the machine

description that a hardware designer must understand

to design a correct implementation of the computer.

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.5

Components of an ISA

• Sometimes known as The Programmer’s Model of the machine

• Storage cells
• General and special purpose registers in the CPU

• Many general-purpose cells of same size in memory

• Storage associated with I/O devices

• The machine instruction set
• The instruction set is the entire repertoire of machine operations

• Makes use of storage cells, formats, and results of the fetch/execute cycle

• i.e., register transfers

• The instruction format
• Size and meaning of fields within the instruction

• The nature of the fetch-execute cycle
• Things that are done before the operation code is known

A Basic Model of the machine

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-6

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.7

An Instruction

• Instruction add r0, r1, r2

• Operation to be perform add r0, r1, r2

• Ans: Op code: add, load, branch, etc.

• Where to find the operands: add r0, r1, r2

• In CPU registers, memory cells, I/O locations, or part of
instruction

• Place to store result add r0, r1, r2

• Again CPU register or memory cell

• Location of next instruction add r0, r1, r3
br endloop

• Almost always memory cell pointed to by program counter(PC)
or Instruction pointer (IP)

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.8

Instructions May be Divided into 3 Classes

• Data movement instructions
• Move data from a memory location or register to another

memory location or register without changing its form

• Load—source is memory and destination is register

• Store—source is register and destination is memory

• Arithmetic and logic (ALU) instructions
• Change the form of one or more operands to produce a result

stored in another location

• Add, Sub, Shift, etc.

• Branch instructions (control flow instructions)
• Alter the normal flow of control from executing the next

instruction in sequence

• Br Loc, Brz Loc2,—unconditional or conditional branches

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.9

Classifying ISA

TOS
Processor

Memory

...

...

Stack

Processor

Memory

...

...

Accumulator
Processor

Memory

...

...

Register-Memory

Processor

Memory

...

...

Register-Register

Example: X = (A+B)*(C+D)

• Zero Address Instructions:
• A stack based computer do not use address field in instruction. To

evaluate an expression first it is converted Post fix Notation.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-10

PUSH A TOP = A

PUSH B TOP = B

ADD TOP = A+B

PUSH C TOP = C

PUSH D TOP = D

ADD TOP = C+D

MUL TOP = (C+D)*(A+B)

POP X M[X] = TOP

Example: X = (A+B)*(C+D)

• One Address Instructions
• There is an implied ACCUMULATOR register for data manipulation.

One operand is in accumulator and other is in register or memory
location.

• The ALU always consider one operand from the ACCUMULATOR
register and route the result into the ACCUMULATOR register.

Instruction Format:

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-11

LOAD A AC = M[A]

ADD B AC = AC + M[B]

STORE T M[T] = AC

LOAD C AC = M[C]

ADD D AC = AC + M[D]

MUL T AC = AC * M[T]

STORE X M[X] = AC

opcode Operand/address

of operand

Example: X = (A+B)*(C+D)

• Two Address Instructions:
• This is common in commercial computers. Here two address can be

specified in the instruction. Unlike earlier in one address instruction the
result was stored in accumulator here result can be stored at different
location rather than just accumulator but require more number of bit to
represent address.

Instruction Format:

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-12

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]

MOV R2, C R2 = C

ADD R2, D R2 = R2 + D

MUL R1, R2 R1 = R1 * R2

MOV X, R1 M[X] = R1

opcode Destination

Address

Source

Address

Example: X = (A+B)*(C+D)

• Three Address Instruction:
• This has three address field to specify a register or a memory location.

Program created are much short in size but number of bits per
instruction increase. These instructions make creation of program much
easier but it does not mean that program will run much faster because
now instruction only contain more information, but each micro-
operation will be performed in one cycle only.

• Instruction Format:

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-13

ADD R1, A, B R1 = M[A] + M[B]

ADD R2, C, D R2 = M[C] + M[D]

MUL X, R1, R2 M[X] = R1 * R2

opcode Destination

Address

Source

Address

Source

Address

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.14

Classifying ISA (Instructions)

• Stack Architectures -
operands are implicitly on the top of the stack

0 address add tos <- tos + next

• Accumulator Architectures -
one operand is implicitly accumulator

1 address add A acc <- acc + mem[A]

• General-Purpose Register Architectures -
only explicit operands, either registers or memory locations
• Memory-Memory :

access memory Locations as part of any instruction

2 address add A, B mem[A] <- mem[A] + mem[B]
3 address add A, B, C mem[A] <- mem[B] + mem[C]

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.15

Classifying ISA (Instructions)

• General-Purpose Register Architectures -
only explicit operands, either registers or memory
locations
• register-memory:

access memory as part of any instruction

2 address add R1, A R1 <- R1 + mem[A]
load R1, A R1 <_ mem[A]

• register-register:
access memory only with load and store instructions

3 address add R1, R2, R3 R1 <- R2 + R3

load R1, R2 R1 <- mem[R2]
store R1, R2 mem[R1] <- R2

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.16

Operand Access

•Register-Register (0,3)
(m, n) means m memory operands and n total operands
in an ALU instruction

• Pure RISC, register to register operations

• Advantages

• Simple, fixed length instruction encoding.

• Simple code generation.

• Instructions take similar number of clocks to execute.
Uniform CPI

• Disadvantages

• Higher inst. count.

• Some instructions are short and bit encoding may be
wasteful.

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.17

Operand Access

•Register-Memory (1,2)
• Register – Memory ALU Architecture

• In later evolutions of RISC and CISC

• Advantages
• Data can be accessed without loading first.

• Instruction format easy to encode

• Good instruction density

• Disadvantages
• Source operand also destination, data overwritten

• Need for memory address field may limit # registers

• CPI varies by operand location

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.18

Operand Access

• Memory-Memory (3,3)
• True memory-memory ALU model, e.g. full orthogonal

CISC architecture

• Advantages
• Most compact instruction density, no temporary registers needed

• Disadvantages
• Memory access create bottleneck

• Variable CPI

• Large variation in instruction size

• Expensive to implement

• Not used in today’s architectures

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.19

Memory Addressing

• What is accessed - byte, word, multiple words?

• today’s machine are byte addressable, due to legacy issues

• But main memory is organized in 32 - 64 byte lines

• matches cache model

• Retrieve data in, say, 4 byte chunks

• Alignment Problem

• accessing data that is not aligned on one of these boundaries will require

multiple references

• E.g. fetching 16 bit integer at byte offset 3 requires two four byte chunks to be

read in (line 0, line 1)

• Can make it tricky to accurately predict execution time with mis-aligned data

• Compiler should try to align! Some instructions auto-align too

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.20

Addressing Modes

• The addressing mode specifies the address of an operand we
want to access

• Register or Location in Memory

• The actual memory address we access is called the effective address

• Effective address may go to memory or a register array

• typically dependent on location in the instruction field

• multiple fields may combine to form a memory address

• register addresses are usually simple - needs to be fast

• Effective address generation is important and should be fast!

• Falls into the common case of frequently executed instructions

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.21

Memory Addressing

Mode Example Meaning When used

Register Add R4, R3 Regs[R4]Regs[R4] +

Regs[R3]
Value is in a
register

Immediate Add R4, #3 Regs[R4]  Regs[R4] + 3 For constants

Displacement Add R4, 100(R1) Regs[R4]  Regs[R4] +

Mem[100+Regs[R1]]
Access local
variables

Indirect Add R4, (R1) Regs[R4]Regs[R4] +

Mem[Regs[R1]]
Pointers

Indexed Add R3,
(R1+R2)

Regs[R3]Mem[Regs

[R1] + Regs[R2]]
Traverse an array

Direct Add R1, $1001 Regs[R1]  Regs[R1] +

Mem[1001]
Static data,
address constant
may be large

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.22

Memory Addressing

Mode Example Meaning When used

Memory
Indirect

Add R1, @(R3) Regs[R1]Regs[R1] +

Mem[Mem[Regs[R3]]]
*p if R3=p

Autoinc Add R1, (R2)+ Regs[R1]Regs[R1]+

Mem[Regs[R2]],
Regs[R2]Regs[R2]+1

Stepping through
arrays in a loop

Autodec Add R1, (R2)- Regs[R1]Regs[R1]+

Mem[Regs[R2]],
Regs[R2]Regs[R2]-1

Same as above. Can
push/pop for a
stack

Scaled Add R1,
100(R2)[R3]

Regs[R1] Regs[R1]+

Mem[100+Regs[R2] +
Regs[R3] * d]

Index arrays by a
scaling factor, e.g.
word offsets

Dr P K Singh TCS-802 Advance Computer Architecture Slide-2.23

Instruction Set Encoding Options
Variable (e.g. VAX)

OpCode and # of ops Operand 1 Operand 2 … Operand N

Fixed (e.g. DLX, SPARC, PowerPC)

OpCode Operand 1 Operand 2 Operand 3

Hybrid (e.g. x86, IBM 360)

OpCode Operand 1 Operand 2 Operand 3

OpCode Operand 1 Operand 2

OpCode Instruction Size? Complexity?

Reduced Instruction Set Computer (RISC)

• RISC architectures represent an important innovation in the area of computer

organization.

• The RISC architecture is an attempt to produce more CPU power by simplifying

the instruction set of the CPU.

• The opposed trend to RISC is that of complex instruction set computers (CISC).

• Both RISCs and CISCs try to solve the same problem. CISCs are going the

traditional way of implementing more and more complex instructions. RISCs try

to simplify the instruction set.

• Innovations in RISC architectures are based on a close analysis of a large set of

widely used programs.

• One of the main concerns of RISC designers was to maximize the efficiency of

pipelining.

• Present architectures often include both RISC and CISC features.

• Both RISC and CISC architectures have been developed as an attempt to

cover the semantic gap.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-24

Typical RlSC Processor Architecture

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-25

Main Characteristics of RISC Architectures:

• The instruction set is limited and includes only simple
instructions.

• Only LOAD and STORE instructions reference data in memory.

• Instructions use only few addressing modes.

• Instructions are of fixed length and uniform format.

• A large number of registers is available.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-26

Main Characteristics of RISC

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-27

A Small number of Simple Instructions:
• Simple and small decode and execution hardware is required.

• A hard-wired controller is needed, rather than using microprogramming.

• CPU takes less silicon area to implement, and run faster also.

• Execution of one machine instruction per clock cycle.

• Register-to-register operation.

• Simple addressing mode.

• Simple instruction format.

Main Characteristics of RISC

Try to achieve one instruction per clock

• Machine cycle is defined to be the time it takes two operands
to fetch from registers, perform an ALU operation and store
the result in a register.

• The instruction pipeline performs more efficiently due to
simple instructions and simpler execution patterns.

• Complex operations are executed as a sequence of simple
instructions. In the case of CISC, these operations are
executed as one single or few complex instructions.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-28

Example

An illustrative example with the following assumption:

• A program with 80% of executed instructions being simple and 20%
complex.

• CISC: simple instructions takes 4 cycles, complex instructions take 8 cycles;
cycle time is 100 ns.

• RISC: simple instructions are executed in one cycle; complex instructions
are implemented as a sequence of instruction(let 14 instructions on
average); cycle time is 75 ns.

How much time takes a program of 1000000 instructions:

CISC: (106 X 0.80 X 4 + 106 X 0.20 X 8) X 10-7 = 0.48 ns

CISC: (106 X 0.80 X 1 + 106 X 0.20 X 14) X .75 X 10-7 = 0.48 ns

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-29

Main features of CISC

• A large number of instructions (> 200) and complex instructions and data
types.

• Many and complex addressing modes.

• Direct hardware implementations of high-level language statements.

• Microprogramming techniques are used so that complicated instructions
can be implemented.

• Memory bottleneck is a major problem, due to complex addressing modes
and multiple memory accesses per instruction.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-30

Typical ClSC Processor Architecture

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-31

An overview

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-32

