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= Clausius Inequality
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Clausius Inequality
Consider a system undergoing a reversible cycle. The given cycle may be sub-
divided by drawing a family of reversible adiabatic lines. Every two adjacent
adiabatic lines may be joined by two reversible isotherms (refers to Figure 1)

Reversible Isotherms

Reversible
Adiabatics

v
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Clausius Inequality cont.......
Now,

and
dy_p = anl —hl g = L’*"Qr:l —dl

Also, | -51'1 -ff1 —C] isa Carnot cycle which receives heat dQ, during the a,b, process
and rejects heat dQ, during the d,c, process. Let the heat addition be at temperature T,
and the heat rejection be at temperature T,. Then it is possible to write,

i T
ﬂ=1—&=1——2
At q

and

gL

g, Ty

or,

40y di;
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Clausius Inequality cont.......
Since dQ, is negative, it reduces to

iy | dda _
1

(l

Similarly for the cycle e,f;h;g,

iy | ddy _
Lo Iy

0

If similar equations are written for all the elementary cycles, then

d
g, dey  dds ddy
L L

b o
H

This is known as Clausius’s theorem

0

or,
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Clausius Inequality cont.......
Let us go back to the cycle albldlcl

f T
TlR :1—&:1—_2
a4

d{)y .
Now T <Mg where, "ir =[1‘a} and this is not equal to [1_?1}

For the irreversible cycle
5

e
_&{:1—_
a0y 1

1

or,

dll  dQ
I R R I
LT L

Because dQ, is negative.
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Clausius Inequality cont.......

Similarly, for the irreversible cycle e,g,h,f,
d d
905,94 _,
Lo

Summing up all elementary cycles

ﬁ{[:l

IET

The above two conclusions about reversible and irreversible cycles can be generalized as
f
fﬁ <0
i

The equality holds good for a reversible cycle and the inequality holds good for an irreversible
cycles. The complete expression is known as Clausius Inequality.
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Concept of Entropy:-

Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The
second law became a law of wider applicability when Clausius introduced the property
called entropy. By evaluating the entropy change, one can explain as to why spontaneous

processes occur only in one direction.
A

Fig.1
Consider a system in initial state 1. Let the system be taken from state 1 to state 2 along a
reversible path 1-A-2, and then be restored to its initial state by following another
reversible path 2BI (Figure 1). Then the two paths put together form a reversible cycle
1A2BI. Apply the Clausius inequality to this reversible cycle and obtain
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Concept of Entropy cont.....

fon 2=
1AZEl + 7
or,

lm:s _[E.E'l
or,

_[1.42 .[E.E'l ll EE

Since path 2B1 is reversible, the limits of the integral can be reversed. That is,j'£
has the same value whether the path followed is 1A2 or 1B2. It is possible to connect the

states 1 and 2 by several reversible paths and see that]% has the same value irrespective

of the path as long as the paths are reversible. Therefore {20/7); is an exact differential of
some function which we identify as entropy. Hence it can be said that there exists a
function S, called entropy, the change in entropy is expressed as

P P
5y -5 =48 = as=[] (@i7),
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Concept of Entropy cont.....

This follows from the Clausius inequality as a consequence of the second law of
thermodynamics. Therefore

ds = (d{T)g  (for reversible process only)

Calculation of Entropy Change

The following facts should be kept in mind while calculating the change in entropy for a
process

1. ds=(d0IT)p for a reversible process

2. Entropy is a state function. The entropy change of a system is determined by its initial
and final states only, irrespective of how the system has changed its state.

3. In analyzing irreversible proceses, it is not necessary to make a direct analysis of the
actual process. One can substitute the actual process by a reversible process
connecting the final state to the initial state, and the entropy change for the
imaginary reversible process can be evaluated.
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Concept of Entropy cont.....
Entropy change for some elementary processes

a._Absorption of energy by a constant temperature reservoir

A certain amount of heat is added to a constant temperature reservoir. The actual process
can be replaced by a reversible path in which an equivalent amount of energy is added to
the reservoir. Then, the entropy change of the reservoir is given by

b= (dQIT)g

b. Heating or Cooling of matter

The heating can be carried out either at constant pressure or at constant volume. From the
first law of thermodynamics

Q=AU for constant volume heating/cooling process

0= hH for constant pressure heating/cooling process

AS =[aQiT= mﬁf c,(@TIT) for a constant pressure process
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Concept of Entropy cont.....
or,
A = e » In(T,/T,) for a constant pressure process

Similarly,
AS = l.:foT: mﬁf c,{dTiT) for a constant volume process

or,
A = me, In(T,/T,) , for a constant volume process

(c) phase change at constant temperature and pressure

Melting : sz = ldgf?: }gsffT [sf=solid to liquid]

Evaporation: ng :ldgf?’: ;gfgfj_f’ [fg = liquid to vapor]
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Concept of Entropy cont.....
(d) Change of state for an ideal gas
If an ideal gas undergoes a change of state from (A.v1.7) to (#2.v2.72)

40 =dU + PV
or,
dg = du + P
or,
e
- (t),
or,

o£f)

or,

lz (e + Pav) li e, dT Ry
hTr Ty
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Concept of Entropy cont.....
Again,  H=U/+FV

or

=l + BV TP

or,
dH = dQ +VdF
or,
d) = di -VdF
or,
dy = dh-vdF
or,
IE dg li{cﬂz—ud} licpcﬂ’ RdP
J'I_Il'h':-': 1 — = { = 1 —
T /o T T F

or,

P
ﬂs:cﬂ In {%J—Rln (ﬁz]

For a constant temperature process (™ iseither + & In [i—EJ or,— & In [
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PRINCIPLE OF ENTROPY INCREASE:-

For any infinitesimal process undergone by a system, we have from Eq.
for the total mass

as> 92
T
For an isolated system which does not undergo any energy interaction with
the surroundings, d O = 0.
Therefore, for an isolated system

dS;, 20
For a reversible process,
dS;, =0
or S = constant
For an irreversible process
dsiso >0

It is thus proved that the entropy of an isolated system can never decrease. It
always increases and remains constant only when the process is reversible.
This is known as the principle of increase of entropy, or simply the entropy
principle. 1t is the quantitative general statement of second law from the
macroscopic viewpoint.

An isolated system can always be formed by including any system and its
surroundings within a single boundary Fig. Sometimes the original
system which is then only a part of the isolated system is called a ‘subsystein’.

— System

e
< Surroundings isolated
(composite) system

Fig. Isolated system
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PRINCIPLE OF ENTROPY INCREASE cont.....

The system and the surroundings together (the universe or the isolated
system) include everything which is affected by the process. For all possible
processes that a sysiem in the given surroundings can undergo

dSuniv 20
or dSys + dSgr 20

Entropy may decrease locally at some region within the isolated system, but
it must be compensated by a greater increase of entropy somewhere within the
system so that the net effect of an irreversible process is an entropy increase of

the whole system. The entropy increase of an isolated system is a measure of
the extent of irreversibility of the process undergone by the system.

Rudolf Clausius summarized the first and second laws of thermodynamics in
the following words:

(a) Die Energie der Welt ist Constant.

(b) Die Entropie der Welt strebt einem Maximum zu.

[(a) The energy of the world (universe) is constant.

(b) The entropy of the world tends towards a maximum.]
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PRINCIPLE OF ENTROPY INCREASE cont.....

The entropy of an isolated system always increases and becomes a maximun
at the state of equilibrium. If the entropy of an isolated system varies with som
parameter x, then there is a certain value of x, which maximizes the entropy

(whcn %S- = O) and represents the equilibrium state Fig. The system i
X

then said to exist at the peak of the entropy hill, and dS = 0. When the system i
at equilibrium, any conceivable change in entropy would be zero.

Smax
&
3
OT? /? /sgilibdum
).,Q
X

Fig. Equilibrium state of an isolated system
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Application of entropy principle:-

The principle of increase of entropy is one of the most important laws of
physical science. It is the quantitative statement of the second law of
thermodynamics. Every irreversible process is accompanied by entropy
increase of the universe, and this entropy increase quantifies the extent of
irreversibility of the process. The higher the entropy increase of the universe,
the higher will be the irreversibility of the process. A few applications of the
entropy principle are illustrated in the following:

1 Transfer of heat through a Finite Temperature Difference

Let O be the rate of heat transfer from reservoir 4 at 7| to reservoir B at T,,
T,>T, Fig.

For reservoir 4, AS, =— Q/T),. It is negative because heat O flows out of the
reservoir. For reservoir B, ASy =+ Q/T,. It is positive because heat flows into

Fig. Heat transfer through a finite temperature difference
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Application of entropy principle cont.....

the reservoir. The rod connecting the reservoirs suffers no entropy change
because, once in the steady state, its coordinates do not change.

Therefore, for the isolated system comprising the reservoirs and the rod, and
since entropy is an additive property

S=SA+SB
AS. .
" = A5, + ASy
or Asum =_.._Q_+__Q_=Q.2;_T2
L I Ln

Since T, > T,, AS;, is positive, and the process is irreversible and possible.
If T, = T,, AS,,, is zero, and the process is reversible. If T) < T, AS;, is
negative and the process is impossible.

2 Mixing of Two Fluids

Subsystem 1 having a fluid of mass m,, specific heat c,, and temperature #,, and
subsystem 2 consisting of a fluid of mass m,, specific heat c¢,, and temperature
t,, comprise a composite system in an adiabatic enclosure Fig. When the
partition is removed, the two fluids mix together, and at
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Application of entropy principle cont....

_—

>t

L7777 ;/////////////}7
Subsystem 1 Subsystem 2

Fig. Mixing of two fluids

Ry W N, N
- ® e

equilibrium let#;be the final temperature, andr, <f;<t,. Since energy interaction
is exclusively confined to the two fluids, the system being isolated

myc)(ty —tp) =myc; (ti— 1)

_ maol + m,yesty
nm, ¢, + MyCy
Entropy change for the fluid in subsystem 1

T T T T 5
t +273
=mc, In
H+273

This will be negative, since T} > T}



cngineering 1 nermodynamics (bivie-12)

Application of entropy principle

)

(o) B c

A
pe————T T3>
Fig. Geometrical proof to show that g.m < a.m.

UNIT-111 (Lecture-4 )
Entropy change for the fluid in subsystem 2

T,
moc,dT
as,= [P cin T < ey 32T
Tl Ti 12"‘273

This will be positive, since 7, < T}
ASyniv = AS) + AS,

=mc;In L3 +m,c, In I,
4 .
AS,.iv Will be positive definite, and the mixing process is irreversible.
Although the mixing process is irreversible, to evaluate the entropy change
for the subsystems, the irreversible path was replaced by a reversible path on
which the integration was performed.
Ifm=my=mandc,=c,=c.

T2
AS iy =mc In T,
and 7. = mlcln +m202T2 = 7; + TZ
% myc, + m,c, 2
Ao B LT

VI, T,

This is always positive, since the arithmetic mean of any two numbers is
always greater than their geometric mean. This can also be proved geometri-
cally. Let a semi-circle be drawn with (7, + 75,) as diameter (Fig. ).

Here, AB= T,, BC= T, and OE = (T, + T,)/2. It is known that
(DBY = AB - BC= T\T,.

s DB= T T,
Now, OE > DB
L +T

=vh T,
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Temperature — Entropy Diagram:-

The infinitesimal change in entropy dS due to reversible heat transfer dQ at
temperature T is

a5 = 99
T
If 4Q,., = 0, i.e., the process is reversible and adiabatic
ds=0
and S = constant
A reversible adiabatic process is, therefore, an isentropic process.
Now
dg,., = 7dS
f
or Orey = j 7dS

The system is taken from i to f reversibly (Fig. \ ). The area under the
curve I T dS is equal to the heat transferred in the process.

For reversxble isothermal heat transfer (Fig. '2_ ), T = constant,
s T _l
| ' \\\\
&\\\

Fig. | Area under a reversible path on Fig. 6 Reversible isothermal heat transfer
the T-s plot represents heat transfer

-T
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Temperature — Entropy Diagram:-

f
O =T [ dS=T(8;- S)

1
For a reversible adiabatic process, dS =0, §= C (Fig. 3 ).
The Carnot cycle comprising two reversible isotherms and two reversible
adiabatics forms a rectangle in the 7-S plane (Fig. |_| ). Process 4-1 represents
reversible isothermal heat addition 0, to the system at 7| from an external

'Y

of

_..’s

Fig. 3 Reversible adiabatic is
isentropic
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Temperature — Entropy Diagram:-

source, process 1-2 is the reversible adiabatic expansion of the system
producing W amount of work, process 2-3 is the reversible isothermal heat
rejection from the system to an external sink at T,, and process 3—-4 represents
reversible adiabatic compression of the system consuming W, amount of work.
Area | 2 3 4 represents the net work output per cycle and the area under 4-1
indicates the quantity of heat added to the system Q,.

po =20 (S -S)- DS - $)
“amt0 (S, - S)

I I
and Woa =01 =0, =(T) = T,) (5, - 5y
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= TdS Equations
= Statement of the third law of thermodynamics.
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TdS Equations:-
For a closed system containing a pure compressible substance undergoing a reversible process.

dU=50,, -6, =Tis- PV

Ty

TaS = dU + FaV, Tds=du+ Fdv

or (per unit mass)
This is the famous Gibbsian equation.
* Eliminate du by using the definition of enthalpy } =1 + By

ThUS, ffﬁﬂ:ifﬂ+laﬁfp+ﬁ dﬂ+PﬁfV:dr??'VdP

Vel F

The = du + Py Also, Tde = dir - vdfF

Important: These equations relate the entropy change of a system to the changes in
other properties : dh,du,dp,dv Therefore, they are independent of the process .

These relations can be used for reversible as well as irreversible processes.
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Statement of the third law of thermodynamics:-

“Third law of thermodynamics’, an independent principle uncovered by
‘Nernst’ and formulated by ‘Planck’, states that the “Entropy of a pure
substance approaches zero at absolute zero temperature.” This fact can
also be corroborated by the definition of entropy which says it is a
measure of molecular disorderness. At absolute zero temperature
substance molecules get frozen and do not have any activity, therefore
It may be assigned zero entropy value at crystalline state. Although the
attainment of absolute zero temperature Is impossible practically,
however theoretically it can be used for defining absolute entropy value
with respect to zero entropy at absolute zero temperature. Second law
of thermodynamics also shows that absolute zero temperature can’t be
achieved.Third law of thermodynamics is of high theoretical
significance for the sake of absolute property definitions and has found
great utility in thermodynamics.
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Example { One kg of ice at -5°C is exposed to the atmosphere which is at
20°C. The ice melts and comes into thermal equilibrium with the atmosphere.
(a) Determine the entropy increase of the universe. (b) What is the minimum
amount of work necessary to convert the water back into ice at -5°C? ¢, of ice
is 2.093 kJ/kg K and the latent heat of fusion of ice is 333.3 kJ/kg.

Solution Heat absorbed by ice Q from the atmosphere (Fig. )

/

/

/ Atmosphere
( 20°C
\

/ :
N
/Q

/

Ice —5°C

CITrerrPrer 77777

Fig.

= Heat absorbed in solid phase + Latent heat
+ Heat absorbed in liquid phase

=1x2093 x[0-(-5)]+1x3333+1x4.187 x(20-0)
=427.5 k]
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Entropy change of the atmospher.
_ 0 427.5 _
A =—-X=—-— =-146 KI/K
(B%m = =7 293
Entropy change of the system (ice) as it gets heated from —5°C to 0°C
273
B d7 _ 273 _
(ASD system = 2{z‘mcp - =1%2.093In 22 =2.093 x 0.0186
= 0.0389 kJ/K
Entropy change of the system as ice melts at 0°C to become water at 0°C
_ 3333 _
(AS))system = T 1.22 kJ/K

Entropy change of water as it gets heated from 0°C to 20°C

293
(AS;) =I”"'p'd—r=lx4187!n-2—9§-'—=0296k1/l(
MWsystem = 2, r ' 273 '

Total entropy change of ice as it melts into water
(AS)iouar = AS; + ASy; + ASyy
= 0.0389 + 1.22 + 0.296
= 1.5549 kJ/K
The entropy-temperature diagram for the system as ice at —5°C converts to

water at 20°C is shown in Fig. 2
~. Entropy increase of the universe

(As)univ = (As)symem + (As)alm
= 1.5549 - 1.46 = 0.0949 kJ/K Ans. (a)
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28K i
~
[ 121, Z
268K <3 N
10.465 kJ 3.7k).
NS NN
Sl
Fig.
(b) To convert 1 kg of water at 20°C Atmosphere
to ice at =5°C, 427.5 kJ of heat have to l at293 K
be removed from it, and the system has lo+w
to be brought from state 4 to state 1
(Fig.Ex.  2). Arefrigerator cycle, as p— @
shown in Fig. Ex. 3, is assumed to
accomplish this.
The entropy change of the system 1Q=427.5k
would be the same, i.e. §;— §,, with
the only difference that its sign will be 1kg Waterat20°C| ¢ T
negative, because heat is removed to ice at - 5°C
from the system (Fig. Ex. 7.3.2).
Fig. 3

(AS)system = Sy — 54

(negative)

| The entropy change of the working fluid in the refrigerator would be zero,
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since it is operating in a cycle, i.e.,
(AS)er =0
The entropy change of the atmosphere (positive)

_O+W
(88)um = =

. Entropy change of the universe
(As)univ ap (As)gystcm + (As)ref + (A‘S’)nun

f o+W
(S, —-Sy + T

By the principle of increase of entropy

(As)univ or isolated system 20
[(s, <y Q;"’] >0

O+ W
T

2(5;—-95)

W2T(S,-5)-0
Wiminy = T(Ss = Sp) - Q
Here 0=4275Kk]
T=293K
Sy~ S, = 15549 kI/K
W gy = 293 X 1.5549 — 427.5
= 28.5kJ
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Example 2 A fluid undergoes a reversible adiabatic compression froi
0.5 MPa, 0.2 m® to 0.05 m? according to the law, pv'> = constant. Determir
the change in enthalpy, internal energy and entropy, and the heat transfer an
work transfer during the process.

Solution
TdS =dH - Vdp
For the reversible adiabatic process (Fig. 2 )
2
PV!3 = Const
‘f
1
FE—— v
Fig.
dH = Vdp

p,=0.5MPa, ¥, =02 m’
V,=0.05m’, p, V", = p, V3

1.3
=0.5 x (919-) MPa

0.05
=0.5 X 6.061 MPa
= 3.0305 MPa

v =p?"

V=(p|;,ln )lln
P
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H P
de = dep

Hy P1

1-1n

- (P] Vln)l/n (pl == pll—nln )

1-1/n
_ n(p ¥, —pih)
n-1
- 1.3(3030.5 x 0.05 - 500 x 0.2)
13-1

=2233kJ
Hy—-H,=(U,+p, V) - (U +p V)

=(U,-U)+(@, Va-piV))
U,- U, =(H, - H) - (p,V, - piVY)

=223.3-51.53
= 171.77 kJ Ans.
$-5=0 Ans.
0,,=0 Ans.

O1.=U,-U,+ W,
Wl_z = Ul - Uz =-171.77KJ Ans.
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Avalilable Enerqy:-

The sources of energy can be divided into two groups, viz. high grade energy and
low grade energy. The conversion of high grade energy to shaft work is exempted
from the limitations of the second law, while conversion of low grade energy is

subject to them.
The examples of two kinds of energy are:
High grade energy Low grade energy

(a) Mechanical work (a) Heat or thermal energy

(b) Electrical energy (b) Heat derived from nuclear fission or
fusion

(c) Water power (c) Heat derived from combustion of fossil
fuels

(d) Wind power
(e) Kinetic energy of a jet
(f) Tidal power

The bulk of the high grade energy in the form of mechanical work or electrical
energy is obtained from sources of low grade energy, such as fuels, through the
medium of the cyclic heat engine. The complete conversion of low grade energy,
heat, into high grade energy, shaft-work, is impossible by virtue of the second law
of thermodynamics. That part of the low grade energy which is available for
conversion is referred to as available energy, while the part which, according to
the second law, must be rejected, is known as unavailable energy.
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Available Enerqy Referred to a Cycle

The maximum work output obtainable from a certain heat input in a cyclic heat
engine (Fig. 1)is called the available energy (A.E.), or the available part of the
energy supplied. The minimum energy that has to be rejected to the sink by the
second law is called the unavailable energy (U.E), or the unavailable part of the

energy supplied.
Therefore, 0O,=A.E.+UE.
or Waoax = A.E. = Q, - U.E.
For the given T, and 7>,
5
Meev =1 - T

1

For a given T, 7, will increase with the decrease of T,. The lowest
practicable temperature of heat rejection is the temperature of the surroundings,

TO
T
oSy . 8
Mmax T
and Wmn=(l-'T_o)Ql
I

Let us consider a finite process x—y, in which heat is supplied reversibly to a

heat engine (Fig. 2). Taking an elementary cycle, if & O, is the heat received by
the engine reversibly at 7, then
I, - T, T;
- d0,=40,- 40, = AE.
1 I

AW, =
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| & ) <

, aqQr

V Q [
o Py

R
‘( Qz =U.E. ::
N To
Fig. 1 Auvailable and unavailable Fig. 2 Availability of energy

energy in a cycle

For the heat engine receiving heat for the whole prucess x—y, and rejecting heat
at T, )

y Yy Y T=
!dwm =£¢Q, = ‘I—TLELGQ'

o W = ALE.

— Qxy - TO (Sy - Sx)
or U.E. = O,y — Wi
or U.E. = Ty(sy — s)

The unavailable energy is thus the product of the lowest temperature of heat
rejection, and the change of entropy of the system during the process of supplying
heat (Fig. 3). The available energy is also known as exergy and the unavailable
energy as energy, the words first coined by Rant (1956).

y
—
A Available
‘ Y .1 energy. or exergy
x ':// _____ T, e =Wy
[ |~ Unavaiabie
= energy
i =To(sy—5sy0

Fig. 3 Unavailable energy by the second law
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Decrease (loss) in Available Energy when heat is transferred through a Finite
Temperature Difference:-

Whenever heat is transferred through a finite temperature difference, there is a
decrease in the availability of energy so transferred.

Let us consider a reversible heat engine operating between 7T, and 7
(Fig. 4). Then

?1
= Y Ty
- Wc __»WE
=
: =5 ¥
i as | °
SR =

Fig. 4 Camnot cycle

Let us now assume that heat Q, is transferred through a finite temperature
difference from the reservoir or source at 7 to the engine absorbing heat at T,
lower than T, (Fig. 5). The availability of Q, as received by the engine at T

lower than T, (Fig. 5). The availability of Q, as received by the engine at T
can be found by allowing the engine to operate reversibly in a cycle between T
and T, receiving O, and rejecting 0,.



Now
since

Since

and
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.__.>T

-
Y
e 2 //j— ot

As’ energy

= §

Fig. 5 [Increase in unavailable energy due to heat transfer
through a finite temperature difference

0,=T As=T As’

T,>TY, - As"> As

0, =Ty As

Q=T As

As">As o 0> 0,
W=Q| gz T|AS"’TOAS'
W=0,-0,=T,As-T) As
W < W, because 0> > 0,
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Available energy or exergy lost due to irreversible heat transfer through finite
temperature difference between the source and the working fluid during the heat
addition process s given by

W-W = gz — Qz
- To (AS' - Af)
or, decrease in A.E. = T (A’ - As)

The decrease in available energy or exergy is thus the product of the lowest
feasible temperature of heat rejection and the additional entropy change in the
system while receiving heat irreversibly, compared to the case of reversible heat
transfer from the same source.

The greater is the temperature difference (T, - T")), the greater is the heat
rejection 0, and the greater will be the unavailable part of the energy supplied or
anergy (Fig. 5). Energy is said to be degraded each time it flows through a finite
temperature difference.
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Dead state:-

If the state of a system departs from that of the surroundings, an opportunity
exists for producing work (Fig. 1 ). However, as the system changes its state

towards that of the surroundings, this opportunity diminishes, and it ceases to
exist when the two are in equilibrium with each other. When the system is in
equilibrium with the surroundings, it must be in pressure and temperature
equilibrium with the surroundings, i.e., at py and 7,. It must also be in chemical
equilibrium with the surroundings, i.e., there should not be any chemical reaction
or mass transfer. The system must have zero velocity and minimum potential
energy. This state of the system is known as the dead srare, which is designated
by affixing subscript ‘0’ to the properties. Any change in the state of the system
from the dead state is a measure of the available work that can be extracted from
it. Farther the initial point of the system from the dead state in terms of p, 7 either
above or below it, higher will be the available energy or exergy of the system
(Fig. 1 ). All spontaneous processes terminate at the dead state.

——»p
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Fig. 1  Available work of a system decreases as its state approaches Fy, T,
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Avallability:- The availability (A) of a given system is defined as the maximum useful work
(total work minus pdV work) that is obtainable in a process in which the system
comes to equilibrium with its surroundings. Availability is thus a composite
property depending on the state of both the system and surroundings.

Avalilability in a Steady flow Process:-

The reversible (maximum) work associated with a steady flow process for a single
flow is given by
2

2
Wm=(H, 2 ’”:' +mgz,)—(H2 TS %

mV;

y 2 mgzz)

With a given state for the mass entering the control volume, the maximum
useful work obtainable (i.e., the availability) would be when this mass leaves the
control volume in equilibrium with the surroundings (i.e., at the dead state). Since
there is no change in volume, no work will be done on the atmosphere. Let us
designate the initial state of the mass entering the C.V. with parameters having no
subscript and the final dead state of the mass leaving the C.V. with parameters
having subscript 0. The maximum work or availability, A, would be

mv?

Aﬂ(H—TbS'*' +mgz)—(Ho—ToSo+mgzo)=‘W"Vo

where y is called the availability function jor a steady flow system and V, = 0.
This is the availability of a system at any state as it enters a C.V. in a steady flow
process. The availability per unit mass would be

2
a=(h—7},s+-‘;—+gz)-(ho‘“Tofo"'gz):V’—WO
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If subscripts 1 and 2 denote the states of a system entering and leavinga C.V.,
the decrease in availability or maximum work obtainable for the given system-
surroundings combination would be

W = a1 =@ = Y~ ¥

V2
= [(h, - Ty 5 +T'+gz,J—(ho - Toso +820)]
Vi
~| & = T 59 +—2—+g22 = (hy — Toso + 829)

V2 -vy3
=(hy = hy) =Ty (s, ~57) + —12—2 +g(2; - 2;)

IfK.E. and P.E. changes are neglected,

Wmu=(hl"Tcsl)_(h2_T052)
=b, - b,

where b is the specific Keenan function.
If more than one flow into and out of the C.V. is involved.

Wmax - zmi V- ch Ve
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Availability in a Non flow Process:-

Let us consider a closed system and denote its initial state by parameters without
any subscript and the final dead state with subscript ‘0’. The availability of the
system A, i.e., the maximum useful work obtainable as the system reaches the

dead state, is given by

A= (W) =E—Eg+po(V— Vo)~ Te(S— Sp)

v2

If K.E. and P.E. changes are neglected and for unit mass, the availability
becomes
a =u—uy+ po(v—1vp) — Ty (s — 5p)
= (u + pov — Tos) — (g — povo —ToSo)
=90 ¢
where ¢ is the availability function of the closed system.
If the system undergoes a change of state from 1 to 2, the decrease in
availability will be
a= (¢, — &) — (9 — &)
=0 - &
=(u) — u3) + po (V) — 03) — Tp(s) — 53)
This is the maximum useful work obtainable under the given surroundings.
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Irreversibility:-

The actual work done by a system is always less than the idealized reversible

work, and the difference between the two is called the irreversibility of the
process.
I=Woo — W
This is also sometimes referred to as ‘degradation’ or ‘dissipation’.
For a non-flow process between the equilibrium states, when the system
exchanges heat only with the environment
I=[U, - Uy - TS, - S - U, - Uy) + O]
=T(5-S)-0

= To(AS)m * TO(AS)m
= Tol(AS)system + (A5)sun]
120
Similarly, for the steady flow process
I=W,, -W
2 v2
= [(B, + m;ﬁ + ng,)—(B2 + mz +ngz)]
mVy mV;
-[(H, + 2‘ +ng,)—(H2 + 22 +mgzz)+Q:|

=To(S2—-S)—-Q
= TO(A*S’)system + TO(AS)M

= To(ASsystem + Seurr) = ToASyniv

The same expressioﬁ for irreversibility applies to both flow and non-flow
processes. The quantity 7o (AS, ., *AS,,,) represents an increase in unavailable
energy (or anergy).
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Second law eﬁICIEHCV: - The second law efficiency, 7y, of a process is defined as the ratio of the
minimum available energy (or exergy) which must be consumed to do a task
divided by the actual amount of available energy (or exergy) consumed in
performing the task.

minimum exergy intake to perform the given task
actual exergy intake to perform the same task

T =

= Amin
T 4
where A is the availability or exergy.

or

Helmholtz & Gibb‘s function:-

For a simple compressible system of fixed chemical composition
thermodynamic properties can be given from combination of
first law and second law of thermodynamics as,

e du=T:ds-pdv

e dh=T.ds+vdp

Gibbs function (g) and Helmholtz function (f) are properties
defined as below.
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Gibbs function,
g=h—T" s, onunit mass basis i.e. specific Gibb s function
also, G=H-T-S
Helmholtz function, f =u—T - s, on unit mass basis i.e. specific Helmholtz function
also, F = U —T - S,In differential form Gibbs function can be given as below for an infinitesimal
reversible processdg=dh—-T-ds—s-dT . .
dg = vdp — sdT for a reversible isothermal process, f dG = f Vdp

1 1

For a “reversible isobaric and isothermal process”, dp = 0, dT = 0 dG = 0Oi.e. G = constant

*  ‘Gibbs function’ is also termed as ‘Gibbs free energy’. For a reversible isobaric and
isothermal process Gibbs free energy remains constant or Gibbs function of the
process remains constant. Such reversible thermodynamic processes may occur in the
processes involving change of phase, such as sublimation, fusion, vaporization etc., in
which Gibbs free energy remains constant.

‘Helmholtz function’ is also called ‘Helmholtz free energy’. For any infinitesimal
reversible process Helmholtz function can be given in differential form as,

df =du—T-ds—sdT
or, df = — pdv — sdT
or,dF = — pdV — SdT
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Example ] In a steam boiler, hot gases from a fire transfer heat to water
which vaporizes at constant temperature. In a certain case, the gases are cooled
from 1100°C to 550°C while the water evaporates at 220°C. The specific heat of

gases is 1.005kJ/kgK, and the latent heat of water at 220°C, is 1858.5 kJ/kg. All
the heat transferred from the gases goes to the water. How much does the total
entropy of the combined system of gas and water increase as a result of the

irreversible heat transfer? Obtain the result on the basis of 1 kg of water
evaporated.

If the temperature of the surroundings is 30°C, find the increase in unavailable
energy due to irreversible heat transfer.

Solution Gas (rit ;) is cooled from state I to state 2 (Fig. Ex.] ).Forreversible
heat transfer, the working fluid (w.f.) in the heat engine having the same ¢, would
have been heated along 2-1, so that at any instant, the temperature difference
between gas and the working fluid is zero. Then 1-b would have been the
expansion of the working fluid down to the lowest possible temperature T, and
the amount of heat rejection would have been given by the area abed.
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Fig. Ex. 1

When water evaporates at 220°C as the gas gets cooled from 1100°C to 550°C,
the resulting power cycle has an unavailable energy represented by the arca aefd.

The increase in unavailable energy due to irreversible heat transfer is thus given
by area befc.
Entropy increase of 1 kg water

Latent heat absorbed 1858.5
AS),ater = = =3.77 kl/kg-K
(B water T (273 + 220) .
Q, = Heat transferred from the gas
= Heat absorbed by water during evaporation

=my cpg(l 100 - 550)

=1x1858.5k]

_ 1858.5

"€ 550

=338 kJ/°C
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Ta )
_fa0 r dT
ASps = IT“ g
Tgl Tgl
ng 823
=mgc, In ===338In——
' 1;, 1373
=-338x0.51
== .25 kIK

Astoul = (As)watcr ¥ (As)gu
=3.17-1.725 = 2,045 kIK

Increase in unavailale energy

= T(A8) g = 303 X 2,045
=620 kJ

Ans.

Ans.
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Example 3  Calculate the decrease in available energy when 25 kg of water
at 95°C mix with 35 kg of water at 35°C, the pressure being taken as constant and
the temperature of the surroundings being 15°C (¢, of water = 4.2 kJ/kg K).

Solution The available energy of a system of mass m, specific heat ¢, and at
temperature 7, is given by

o, &
AE.=mc, j(l - —Q-)dr
To

T
(A.E.),s = Available energy of 25 kg of water at 95°C
273+ 95
=2sx42 [ (1-28)ar
273 +15 r
368
= 105 [ 368 — 288) — 2881 —]
{ : " 288

= 987.49 kJ
(A.E.);5 = Available energy of 35 kg of water at 35°C

~ 147 [(308 — 288) — 288 In 39§]

288
= 97.59 kJ
Total available energy
(A-E.) o = (A.E.)2s + (A.E.);5
= 987.49 + 97.59
= ]085.08 kJ
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After mixing, if ¢ is the final temperature
25%x42(95-1)=35x%x4.2(t1-35)
- 25 x95%x35x%x35
25+35
=60°C
Total mass after mixing = 25 + 35 = 60 kg
(A.E.)¢ = Available energy of 60 kg of water at 60°C

= 4.2 % 60 [(333 —288) - 288 In -3—31]
288

= 803.27 kJ
~. Decrease in available energy due to mixing
= Total available energy before mixing
— Total available energy after mixing
= 1085.08 - 803.27
=281.81kJ Ans.



