ELECTRONIC MEASUREMENT & INSTRUMENTATION (BEC-29)

Instructor Dr. B. P. Pandey

Assistant Professor

Department of Electronics and Communication Engineering
Madan Mohan Malaviya University of Technology , Gorakhpur
August, 2020

UNIT- 2 Lecture-3 Transducers

CONTENTS

Lecture 1:

- Introduction
- Selection Parameters of Transducer

Lecture 2:

Resistive Transducer

Lecture 3:

Strain Gauges

Lecture 4 & 5:

- Inductive Transducer
- Differential Output Transducers
- LVDT

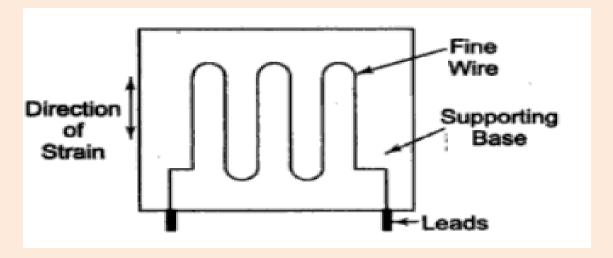
Lecture 6:

Capacitive Transducer

Lecture 7:

- Photo-electric Transducer
- Photo cells

Lecture 8:


- Photo-Voltaic Cell
- Photo Transistors

Lecture 9:

- Temperature Transducers
- Mechanical Transducer

Strain Gauges

• A fine wire element is bounded back and forth, which is usually cemented on the member undergoing stress. The grid of fine wire is cemented on a carrier which may be a thin sheet of paper, bakelite or teflon.

 A tensile stress tends to elongate on the wire and thereby increase its length and decrease its cross-sectional area. The combined effect is increase in resistance.

$$R = \frac{\rho \times l}{A}$$
where ρ = the specific resistance of the material in Ω m
$$l = \text{the length of the conductor in m}$$

$$A = \text{the area of the conductor in m}^2$$

As a result of strain, two physical parameters are of particular interest.

- 1. The change in gauge resistance.
- 2. The change in length.

The measurement of the sensitivity of a material to strain is called the gauge factor (GF). It is the ratio of the change in resistance $\Delta R/R$ to the change in the length $\Delta l/l$

i.e.
$$GF(K) = \frac{\Delta R/R}{\Delta l/l}$$
 (13.1)

where K = gauge factor

 ΔR = the change in the initial resistance in Ω 's

R = the initial resistance in Ω (without strain)

 $\Delta l =$ the change in the length in m

l = the initial length in m (without strain)

Activate Wind Go to Settings to

Since strain is defined as the change in length divided by the original length,

i.e. $\sigma = \frac{\Delta l}{l}$

Eq. (13.1) can be written as

$$K = \frac{\Delta R/R}{\sigma} \tag{13.2}$$

where σ is the strain in the lateral direction.

The resistance of a conductor of uniform cross-section is

$$R = \rho \frac{\text{length}}{\text{area}}$$

$$R = \rho \frac{l}{\pi r^2}$$

Since

$$r = \frac{d}{2} \quad \therefore \quad r^2 = \frac{d^2}{4}$$

$$R = \rho \frac{l}{\pi d^2/4} = \rho \frac{l}{\pi/4 d^2}$$

(13.3)

where ρ = specific resistance of the conductor

l = length of conductor

Activate Will Go to Settings t

When the conductor is stressed, due to the strain, the length of the conductor increases by Δl and the simultaneously decreases by Δd in its diameter. Hence the resistance of the conductor can now be written as

$$R_s = \rho \frac{(l+\Delta l)}{\pi/4(d-\Delta d)^2} = \frac{\rho(l+\Delta l)}{\pi/4(d^2-2d\Delta d+\Delta d^2)}$$

Since Δd is small, Δd^2 can be neglected

$$R_s = \frac{\rho (l + \Delta l)}{\pi/4 (d^2 - 2d \Delta d)}$$

$$= \frac{\rho (l + \Delta l)}{\pi/4 d^2 \left(1 - \frac{2\Delta d}{d}\right)} = \frac{\rho l (1 + \Delta l/l)}{\pi/4 d^2 \left(1 - \frac{2\Delta d}{d}\right)}$$
(13.4)
Activate Wind Go to Settings to a

Now, Poisson's ratio μ is defined as the ratio of strain in the lateral direction

to strain in the axial direction, that is,

$$\mu = \frac{\Delta d/d}{\Delta l/l} \tag{13.5}$$

$$\therefore \qquad \frac{\Delta d}{d} = \mu \, \frac{\Delta l}{l} \tag{13.6}$$

Substituting for $\Delta d/d$ from Eq. (13.6) in Eq. (13.4), we have

$$R_s = \frac{\rho l (1 + \Delta l/l)}{(\pi/4) \frac{d^2}{d^2} (1 - 2\mu \Delta l/l)}$$

Rationalising, we get

$$R_s = \frac{\rho l (1 + \Delta l/l)}{(\pi/4) d^2 (1 - 2\mu \Delta l/l)} \frac{(1 + 2\mu \Delta l/l)}{(1 + 2\mu \Delta l/l)}$$

$$\therefore R_s = \frac{\rho l}{(\pi/4) d^2} \left[\frac{(1 + \Delta l/l)}{(1 - 2\mu \Delta l/l)} \frac{(1 + 2\mu \Delta l/l)}{(1 + 2\mu \Delta l/l)} \right]$$

$$\therefore R_s = \frac{\rho l}{(\pi/4) d^2} \left[\frac{1 + 2\mu \Delta l/l + 2\Delta l/l + 2\mu \Delta l/e \Delta l/l}{1 - 4\mu^2 (\Delta l/l)^2} \right]$$

$$\therefore R_s = \frac{\rho l}{(\pi/4) d^2} \left[\frac{1 + 2\mu \Delta l/l + \Delta l/l + 2\mu \Delta l^2/l^2}{1 - 4\mu^2 \Delta l^2/l^2} \right]$$

Since Δl is small, we can neglect higher powers of Δl .

$$R_s = \frac{\rho l}{(\pi/4) d^2} [1 + 2 \mu \Delta l/l + \Delta l/l]$$

Activ Go to

$$R_{s} = \frac{\rho l}{(\pi/4) d^{2}} \left[1 + 2 \mu \Delta l/l + \Delta l/l \right]$$

$$R_{s} = \frac{\rho l}{(\pi/4) d^{2}} \left[1 + (2 \mu + 1) \Delta l/l \right]$$

$$R_{s} = \frac{\rho l}{(\pi/4) d^{2}} \left[1 + (1 + 2 \mu) \Delta l/l \right]$$

$$R_s = \frac{\rho l}{(\pi/4) d^2} + \frac{\rho l}{(\pi/4) d^2} (\Delta l/l) (1 + 2 \mu)$$

Since from Eq. (13.3),
$$R = \frac{\rho l}{(\pi/4) d^2}$$

$$\therefore \qquad \qquad R_s = R + \Delta R \tag{13.7}$$

Activate

Go to Settin

where $\Delta R = \frac{\rho l}{(\pi/4) d^2} (\Delta l/l) (1 + 2 \mu)$

.. The gauge factor will now be

$$K = \frac{\Delta R/R}{\Delta l/l} = \frac{(\Delta l/l)(1 + 2\mu)}{\Delta l/l}$$
$$= 1 + 2\mu$$

$$K = 1 + 2 \mu \tag{13.8}$$

Assignment Questions

- Define strain gauge. Define gauge factor.
- Define the operation and construction of strain gauge.
- State the limitations of strain gauge.
- Explain how temperature compensation can be achieved using strain gauge.
- Explain with diagram the working of a resistance wire gauge.

Conceptual Questions

- Strain gauge is a _____
 - a) inductive transducer
 - b) resistive transducer
 - c) capacitive transducer
 - d) mechanical transducer
- Strain is defined as _____
 - a) change in height per unit height
 - b) change in weight per unit weight
 - c) change in length per unit length
 - d) change in diameter per unit diameter
- Electrical strain gauge works on the principle of

a) variation of resistance

b) variation of capacitance

c) variation of inductance

d) variation of area

- Bonding element in a strain gauge must have _____
 - a) zero insulation resistance
 - b) low insulation resistance
 - c) high insulation resistance
 - d) infinite insulation resistance
- Dynamic strain measurements use ______
 - a) brass iron alloy
 - b) iron aluminium alloy
 - c) nickel cadmium alloy
 - d) nickel chromium alloy
- Commonly used elements for wire strain gauges are ______
 - a) nickel and copper
 - b) nickel and gold
 - c) gold and brass
 - d) silver and aluminum

