
08-11-2020 Side 1

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Department of Computer Science & Engineering

Madan Mohan Malaviya University of Technology
Gorakhpur, India

PRINCIPLES OF DATA STRUCTURES THROUGH C/C++

BCS-12

Contact Hours Lecture : 3, Tutorial : 1 , Practical: 2 (online 4 lectures/week)

Number of Credits :5

B.Tech (Computer Science & Engg.) Semester: III

By

Muzammil Hasan
(Asst. Prof)

08-11-2020 Side 2

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Course Outcomes
The students are expected to be able to demonstrate the following knowledge, skills
and attitudes after completing this course

1. Describe how arrays, records, linked lists, stacks, queues, trees, and graphs are
represented in memory, used by the algorithms and their common applications.

2. Write programs that use arrays, records, linked structures, stacks, queues, trees,
and graphs.

3. Compare and contrast the benefits of dynamic and static data structures
implementations.

4. Identity the alternative implementations of data structures with respect to its
performance to solve a real world problem.

5. Demonstrate organization of information using Trees and Graphs and also to
perform different operations on these data structures.

6. Design and implement an appropriate organization of data on primary and
secondary memories for efficient its efficient retrieval. .

7. Discuss the computational efficiency of the principal algorithms for sorting,
searching and hashing.

8. Describe the concept of recursion, its application, its implementation and removal
of recursion.

08-11-2020 Side 3

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

"Get your data structures correct first, and the rest
of the program will write itself."
- David Jones

08-11-2020 Side 4

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

EXPERIMENTS

Write C/C++ Programs to illustrate the concept of the
following:

• 1. Sorting Algorithms-Non-Recursive

• 2. Sorting Algorithms-Recursive

• 3. Searching Algorithm

• 4. Stack

• 5. Queue

• 6. Linked List

• 7. Graph

08-11-2020 Side 5

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Textbooks

• Horowitz and Sahani, Fundamentals of Data Structures, Galgotia
Publication, New Delhi.

• R. Kruseetal, Data Structure and Pragram Design in C, Pearson
Education Asia Delhi

• A. M.Tenenbaum, Data Structures using C & C++, PHI, India

• K Loudon, Mastering Algorithms with C, Shroff Publication and
Distributor Pvt. Ltd.

• Bruno R Preiss, Data Structure and Algorithms with Object Oriented
Design Pattern in C++, John Wiley & Sons

• Adam Drozdek, “Data Structures and Algorithms in C++”, Thomson
Asia Pvt. Ltd. Singapore

08-11-2020 Side 6

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Definition

• Data structure is representation of the logical

relationship existing between individual elements of

data.

• In other words, a data structure is a way of organizing

all data items that considers not only the elements stored

but also their relationship to each other.

08-11-2020 Side 7

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

• All programs manipulate data

o programs process, store, display, gather

o data can be information, numbers, images, sound

• Each program must decide how to store data

• Choice influences program at every level

o execution speed

o memory requirements

o maintenance (debugging, extending, etc.)

08-11-2020 Side 8

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Introduction

• Data structure affects the design of both structural &

functional aspects of a program.

Program=algorithm + Data Structure

• You know that a algorithm is a step by step procedure to

solve a particular function.

• That means, algorithm is a set of instruction written to carry

out certain tasks & the data structure is the way of

organizing the data with their logical relationship retained.

• To develop a program of an algorithm, we should select an

appropriate data structure for that algorithm.

• Therefore algorithm and its associated data structures from a

program.

08-11-2020 Side 9

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Abstract Data Type (ADT)

1) An opportunity for an acronym

2) Mathematical description of an object and the set of
operations on the object

08-11-2020 Side 10

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Classification of Data Structure

Data structure are normally divided into two broad categories:

• Primitive Data Structure

• Non-Primitive Data Structure

Data structure

Primitive DS Non-Primitive DS

Float Character PointerFloatInteger Float

08-11-2020 Side 11

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

08-11-2020 Side 12

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Primitive Data Structure

• There are basic structures and directly operated upon by the
machine instructions.

• In general, there are different representation on different
computers.

• Integer, Floating-point number, Character constants, string
constants, pointers etc, fall in this category.

08-11-2020 Side 13

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Non-Primitive Data Structure

• There are more sophisticated data structures.

• These are derived from the primitive data structures.

• The non-primitive data structures emphasize on structuring

of a group of homogeneous (same type) or heterogeneous

(different type) data items.

• Lists, Stack, Queue, Tree, Graph are example of non-

primitive data structures.

• The design of an efficient data structure must take

operations to be performed on the data structure.

08-11-2020 Side 14

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The most commonly used operation on data structure
are broadly categorized into following types:

• Create

• Selection

• Updating

• Searching

• Sorting

• Merging

• Destroy or Delete

08-11-2020 Side 15

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Primitive Vs Non Primitive

• A primitive data structure is generally a basic

structure that is usually built into the language, such

as an integer, a float.

• A non-primitive data structure is built out of

primitive data structures linked together in

meaningful ways, such as a or a linked-list, binary

search tree, AVL Tree, graph etc.

08-11-2020 Side 16

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Array

• An array is defined as a set of finite number of homogeneous elements

or same data items.

• It means an array can contain one type of data only, either all integer,

all float-point number or all character.

• Simply, declaration of array is as follows:

int arr[10]
• Where int specifies the data type or type of elements arrays stores.

• “arr” is the name of array & the number specified inside the square

brackets is the number of elements an array can store, this is also

called sized or length of array.

08-11-2020 Side 17

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Array Representation:(Storagestructure)
Arrays can be declared in various ways in different
languages. For illustration, let's take C array declaration.

Arrays can be declared in various ways in different

languages. For illustration, let's take C array

declaration.

08-11-2020 Side 18

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

As per the above illustration, following are the important points to be
considered.

• Index starts with 0.

• Array length is 10 which means it can store 10 elements.

• Each element can be accessed via its index. For example, we can fetch an
element at index 6 as 9.

Basic Operations

Following are the basic operations supported by an array.

• Traverse − print all the array elements one by one.

• Insertion − Adds an element at the given index.

• Deletion − Deletes an element at the given index.

• Search − Searches an element using the given index or by the value.

• Update − Updates an element at the given index.

08-11-2020 Side 19

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Following are some of the concepts to be remembered about
arrays:

• The individual element of an array can be accessed by
specifying name of the array, following by index or subscript
inside square brackets.

• The first element of the array has index zero[0]. It means the
first element and last element will be specified as : arr[0] &
arr[9] respectively.

08-11-2020 Side 20

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

• The elements of array will always be stored in the
consecutive (continues) memory location.

• The number of elements that can be stored in an array, that is
the size of array or its length is given by the following
equation:

(Upperbound-lowerbound)+1

08-11-2020 Side 21

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

For the above array it would be

• (9-0)+1=10,where 0 is the lower bound of array and 9
is the upper bound of array.

•Array can always be read or written through loop. If
we read a one-dimensional array it require one loop
for reading and other for writing the array.

•For example: Reading an array

for(i=0;i<=9;i++)

scanf(“%d”,&arr[i]);

•For example: Writing an array

For(i=0;i<=9;i++)

printf(“%d”,arr[i]);

08-11-2020 Side 22

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

If we are reading or writing two-dimensional array it would

require two loops and similarly the array of a N dimension

would required N loops.

Insertion Operation

• Insert operation is to insert one or more data elements into

an array. Based on the requirement, a new element can be

added at the beginning, end, or any given index of array.

Algorithm

Let LA be a Linear Array (unordered) with N elements and K

is a positive integer such that K<=N.

08-11-2020 Side 23

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Following is the algorithm where ITEM is inserted into the Kth

position of LA

1. Start

2. Set J = N

3. Set N = N+1

4. Repeat steps 5 and 6 while J >= K

5. Set LA[J+1] = LA[J]

6. Set J = J-1

7. Set LA[K] = ITEM

8. Stop

08-11-2020 Side 24

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Deletion Operation

• Deletion refers to removing an existing element from the array and

re-organizing all elements of an array.

Algorithm

Consider LA is a linear array with N elements and K is a positive

integer such that K<=N.

Following is the algorithm to delete an element available at the Kth

position of LA.

1. Start

2. Set J = K

3. Repeat steps 4 and 5 while J < N

4. Set LA[J] = LA[J + 1]

5. Set J = J+1

6. Set N = N-1

7. Stop

08-11-2020 Side 25

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

SearchOperation

• You can perform a search for an array element based on its

value or its index. Algorithm

• Consider LA is a linear array with N elements and K is a

positive integer such that K<=N.

Following is the algorithm to find an element with a value of

ITEM using sequential search.

1. Start

2. Set J = 0

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP 6

5. Set J = J +1

6. PRINT J, ITEM

7. Stop

08-11-2020 Side 26

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

UpdateOperation

• Update operation refers to updating an existing element

from the array at a given index.

Algorithm

• Consider LA is a linear array with N elements and K is a

positive integer such that K<=N.

Following is the algorithm to update an element available at

the Kth position of LA.

1. Start

2. Set LA[K-1] = ITEM

3. Stop

08-11-2020 Side 27

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Application

Sparse Matrix and its representations

• A matrix is a two-dimensional data object made of m rows

and n columns, therefore having total m x n values. If most of

the elements of the matrix have 0 value, then it is called a

sparse matrix.

Why to use Sparse Matrix instead of simple matrix ?

• Storage: There are lesser non-zero elements than zeros and

thus lesser memory can be used to store only those elements.

• Computing time: Computing time can be saved by logically

designing a data structure traversing only non-zero elements..

Example:
0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

https://www.geeksforgeeks.org/data-structures/

08-11-2020 Side 28

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

• Representing a sparse matrix by a 2D array leads to wastage

of lots of memory as zeroes in the matrix are of no use in

most of the cases. So, instead of storing zeroes with non-

zero elements, we only store non-zero elements. This means

storing non-zero elements with triples- (Row, Column,

value).

Sparse Matrix Representations can be done in many ways

following are two common representations:

• 1. Array representation

• 2. Linked list representation

08-11-2020 Side 29

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Using Arrays #include<stdio.h>
int main()
{
// Assume 4x5 sparse matrix
int sparseMatrix[4][5] ={
{0 , 0 , 3 , 0 , 4 },
{0 , 0 , 5 , 7 , 0 },
{0 , 0 , 0 , 0 , 0 },
{0 , 2 , 6 , 0 , 0 }
};

int size = 0;
for (int i = 0; i < 4; i++) for (int j = 0; j < 5; j++)
if (sparseMatrix[i][j] != 0) size++;
int compactMatrix[3][size]; // Making of new matrix

08-11-2020 Side 30

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

int k = 0;
for (int i = 0; i < 4; i++) for (int j = 0; j < 5; j++)
if (sparseMatrix[i][j] != 0)
{
compactMatrix[0][k] = i;
compactMatrix[1][k] = j;
compactMatrix[2][k] = sparseMatrix[i][j];
k++;
}
for (int i=0; i<3; i++) {
for (int j=0; j<size; j++)
printf("%d ", compactMatrix[i][j]); printf("\n");
}
return 0;
}

08-11-2020 Side 31

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

08-11-2020 Side 32

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

List

• A lists (Linear linked list) can be defined as a collection
of variable number of data items.

• Lists are the most commonly used non-primitive data
structures.

• An element of list must contain at least two fields, one for
storing data or information and other for storing address
of next element.

• As you know for storing address we have a special data
structure of list the address must be pointer type

08-11-2020 Side 33

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Technically each such element is referred to as a node, therefore a list

can be defined as a collection of nodes as show bellow:

Head

AAA BBB CCC

Information field Pointer field

[Linear Liked List]

08-11-2020 Side 34

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

List ADT
AbstractDataType LinearList

{

instances

ordered finite collections of zero or more elements

operations

isEmpty(): return true iff the list is empty, false otherwise

size(): return the list size (i.e., number of elements in the list)

get(index): return the indexth element of the list

indexO f(x): return the index of the first occurrence of x in the list, return -1 if x is not in
the list

remove(index): remove and return the indexth element, elements with higher index have
their index reduced by 1

add(theIndex, x): insert x as the indexth element, elements with theIndex >= index have
their index increased by 1

output(): output the list elements from left to right

}

08-11-2020 Side 35

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Types of linked lists:

• Single linked list

• Doubly linked list

• Single circular linked list

• Doubly circular linked list

08-11-2020 Side 36

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Stack
• A stack is also an ordered collection of elements like arrays, but

it has a special feature that deletion and insertion of elements can

be done only from one end called the top of the stack (TOP)

• Due to this property it is also called as last in first out type of

data structure (LIFO).

• It could be through of just like a stack of plates placed on table in

a party, a guest always takes off a fresh plate from the top and

the new plates are placed on to the stack at the top.

• It is a non-primitive data structure.

• When an element is inserted into a stack or removed from the

stack, its base remains fixed where the top of stack changes.

08-11-2020 Side 37

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Operations

Stack operations may involve initializing the stack, using it and

then de-initializing it. Apart from these basic stuffs, a stack is

used for the following two primary operations −

• push() − Pushing (storing) an element on the stack.

• pop() − Removing (accessing) an element from the stack.

To use a stack efficiently, we need to check the status of stack

as well. For the same purpose, the following functionality is

added to stacks −

peek() − get the top data element of the stack, without

removing it. ·

isFull() − check if stack is full.

isEmpty() − check if stack is empty.

08-11-2020 Side 38

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

• Insertion of element into stack is called PUSH and deletion

of element from stack is called POP.

• The bellow show figure how the operations take place on a

stack:

PUSH POP

[STACK]

08-11-2020 Side 39

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The stack can be implemented into two ways:

• Using arrays (Static implementation)

• Using pointer (Dynamic implementation)

08-11-2020 Side 40

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

At all times, we maintain a pointer to the last PUSHed data on the

stack. As this pointer always represents the top of the stack,

hence named top. The top pointer provides top value of the stack

without actually removing it.

First we should learn about procedures to support stack functions

− peek()

Algorithm of peek() function −

• begin procedure peek

• return stack[top]

• end procedure

Implementation of peek() function in C programming language

int peek() {

return stack[top]; }

08-11-2020 Side 41

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

isfull()

Algorithm of isfull() function −

• begin procedure isfull

• if top equals to MAXSIZE return true

• else

• return false endif

• end procedure

Implementation of isfull() function in C language

bool isfull()

{

if(top == MAXSIZE) return true;

else

return false;

}

08-11-2020 Side 42

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

isempty()

Algorithm of isempty() function −

• begin procedure isempty

• if top less than 1 return true

• else

• return false endif

• end procedure

Implementation of isempty() function in C programming

language is slightly different. We initialize top at -1, as the

index in array starts from 0. So we check if the top is below

zero or -1 to determine if the stack is empty.

bool isempty()

{ if(top == -1)

return true; else

return false; }

08-11-2020 Side 43

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

PushOperation

The process of putting a new data element onto stack is known

as a Push Operation. Push operation involves a series of steps

Step 1 − Checks if the stack is full.

Step 2 − If the stack is full, produces an error and exit.

Step 3 − If the stack is not full, increments top to point next

empty space.

Step 4 − Adds data element to the stack location, where top is

pointing.

Step 5 − Returns success.

08-11-2020 Side 44

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

begin procedure push:stack, data

if stack is full

return null endif

top ← top + 1

stack[top] ← data

end procedure

08-11-2020 Side 45

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

PopOperation

Accessing the content while removing it from the stack, is

known as a Pop Operation. In an array implementation of pop()

operation, the data element is not actually removed, instead top

is decremented to a lower position in the stack to point to the

next value. But in linked-list implementation, pop() actually

removes data element and deallocates memory space.

A Pop operation may involve the following steps −

Step 1 − Checks if the stack is empty.

Step 2 − If the stack is empty, produces an error and exit.

Step 3 − If the stack is not empty, accesses the data element at

which top is pointing.

Step 4 − Decreases the value of top by 1.

Step 5 − Returns success.

08-11-2020 Side 46

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

A simple algorithm for Pop operation can be derived as follows −

• begin procedure pop: stack
• if stack is empty return null
• endif
• data ← stack[top] top ← top - 1
• return data
• end procedure

08-11-2020 Side 47

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Stack Applications

Three applications of stacks are presented here. These examples

are central to many activities that a computer must do and

deserve time spent with them.

1. Expression evaluation

2. Backtracking (game playing, finding paths, exhaustive

searching)

3. Memory management, run-time environment for nested

language features.

08-11-2020 Side 48

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Expression evaluation

• In particular we will consider arithmetic expressions. Understand

that there are boolean and logical expressions that can be evaluated

in the same way. Control structures can also be treated similarly in a

compiler.

• This study of arithmetic expression evaluation is an example of

problem solving where you solve a simpler problem and then

transform the actual problem to the simpler one.

08-11-2020 Side 49

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Infix, Prefix and Postfix Notation

• We are accustomed to write arithmetic expressions with the operation
between the two operands: a+b or c/d. If we write a+b*c, however, we
have to apply precedence rules to avoid the ambiguous evaluation (add
first or multiply first?).

• There's no real reason to put the operation between the variables or
values. They can just as well precede or follow the operands. You
should note the advantage of prefix and postfix: the need for
precedence rules and parentheses are eliminated.

08-11-2020 Side 50

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Infix to postfix conversion

Read the tokens from a vector infixVect of tokens (strings) of an infix
expression

• When the token is an operand

• Add it to the end of the vector postfixVect of token (strings) that
is used to store the corresponding postfix expression

• When the token is a left or right parenthesis or an operator

• If the token x is “(“

• Push_back the token x to the end of the vector stackVect of
token (strings) that simulates a stack

• if the token x is “)”

• Repeatedly pop_back a token y from stackVect and
push_back that token y to postfixVect until “(“ is
encountered in the end of stackVect. Then pop_back “(“ from
stackVect.

08-11-2020 Side 51

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

• If stackVect is already empty before finding a “(“, that
expression is not a valid expression.

• if the token x is a regular operator

• Step 1: Check the token y currently in the end of stackVect.

• Step 2: If (case 1) stackVect is not empty and (case 2) y is
not “(“ and (case 3) y is an operator of higer or equal
precedence than that of x, then pop_back the token y from
stackVect and push_back the token y to postfixVect, and go
to Step 1 again.

• Step 3: If (case 1) stackVect is already empty or (case 2) y
is “(“ or (case 3) y is an operator of lower precedence than
that of x, then push_back the token x into stackVect.

08-11-2020 Side 52

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

• When all tokens in infixVect are processed as described

above, repeatedly pop_back a token y from stackVect and

push_back that token y to postfixVect until stackVect is

empty

infixVect

postfixVect

(a + b - c) * d – (e + f)

08-11-2020 Side 53

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

a + b - c) * d – (e + f)

(

08-11-2020 Side 54

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

+ b - c) * d – (e + f)

(

a

stackVect

08-11-2020 Side 55

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

b - c) * d – (e + f)

(

a

+

stackVect

08-11-2020 Side 56

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

- c) * d – (e + f)

(

a b

+

stackVect

08-11-2020 Side 57

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

c) * d – (e + f)

(

a b +

-

stackVect

08-11-2020 Side 58

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

) * d – (e + f)

(

a b + c

-

stackVect

08-11-2020 Side 59

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

* d – (e + f)

a b + c -

stackVect

08-11-2020 Side 60

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

d – (e + f)

a b + c -

*

stackVect

08-11-2020 Side 61

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

– (e + f)

a b + c - d

*

stackVect

08-11-2020 Side 62

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

– (e + f)

a b + c - d

*

stackVect

08-11-2020 Side 63

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

(e + f)

a b + c – d *

-

stackVect

08-11-2020 Side 64

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

e + f)

a b + c – d *

-

(

stackVect

08-11-2020 Side 65

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

+ f)

a b + c – d * e

-

(

stackVect

08-11-2020 Side 66

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

f)

a b + c – d * e

-

(

+

stackVect

08-11-2020 Side 67

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

)

a b + c – d * e f

-

(

+

stackVect

08-11-2020 Side 68

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

a b + c – d * e f +

-

stackVect

08-11-2020 Side 69

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

infixVect

postfixVect

a b + c – d * e f + -

stackVect

08-11-2020 Side 70

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

From Postfix to Answer

Algorithm:

• Maintain a stack and scan the postfix expression from left to right

• If the element is a number, push it into the stack

• If the element is a operator O, pop twice and get A and B
respectively. Calculate BOA and push it back to the stack

• When the expression is ended, the number in the stack is the final
answer

08-11-2020 Side 71

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Reverse-Polish Notation

Alternatively, we can place the operands first, followed by the

operator:

(3 + 4) × 5 – 6

3 4 + 5 × 6 –

Parsing reads left-to-right and performs any operation on the

last two operands:

3 4 + 5 × 6 –

7 5 × 6 –

35 6 –

29

08-11-2020 Side 72

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Other example:

3 4 5 × + 6 –

3 20 + 6 –

23 6 –

17

3 4 5 6 – × +

3 4 –1 × +

3 –4 +

–1

08-11-2020 Side 73

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Benefits:

• No ambiguity and no brackets are required

• It is the same process used by a computer to perform

computations:

• operands must be loaded into registers before

operations can be performed on them

• Reverse-Polish can be processed using stacks

08-11-2020 Side 74

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The easiest way to parse reverse-Polish notation is to use an

operand stack:

• operands are processed by pushing them onto the stack

• when processing an operator:

• pop the last two items off the operand stack,

• perform the operation, and

• push the result back onto the stack

08-11-2020 Side 75

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Evaluate the following reverse-Polish expression using a stack:

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

08-11-2020 Side 76

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

1

08-11-2020 Side 77

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

2

1

08-11-2020 Side 78

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 3 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

3

2

1

08-11-2020 Side 79

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop 3 and 2 and push 2 + 3 = 5

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5

1

08-11-2020 Side 80

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 4 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

4

5

1

08-11-2020 Side 81

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 5 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5

4

5

1

08-11-2020 Side 82

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 6 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

6

5

4

5

1

08-11-2020 Side 83

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop 6 and 5 and push 5 × 6 = 30

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

30

4

5

1

08-11-2020 Side 84

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop 30 and 4 and push 4 – 30 = –26

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–26

5

1

08-11-2020 Side 85

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 7 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

7

–26

5

1

08-11-2020 Side 86

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop 7 and –26 and push –26 × 7 = –182

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–182

5

1

08-11-2020 Side 87

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop –182 and 5 and push –182 + 5 = –177

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–177

1

08-11-2020 Side 88

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop –177 and 1 and push 1 – (–177) = 178

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

178

08-11-2020 Side 89

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 8 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

8

178

08-11-2020 Side 90

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

9

8

178

08-11-2020 Side 91

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop 9 and 8 and push 8 × 9 = 72

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

72

178

08-11-2020 Side 92

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Pop 72 and 178 and push 178 + 72 = 250

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

250

08-11-2020 Side 93

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Thus

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

evaluates to the value on the top: 250

The equivalent in-fix notation is

((1 – ((2 + 3) + ((4 – (5 × 6)) × 7))) + (8 × 9))

We reduce the parentheses using order-of-operations:

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

08-11-2020 Side 94

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Incidentally,

1 – 2 + 3 + 4 – 5 × 6 × 7 + 8 × 9 = – 132

which has the reverse-Polish notation of

1 2 – 3 + 4 + 5 6 7 × × – 8 9 × +

For comparison, the calculated expression was

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

08-11-2020 Side 95

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Queue

• Queue are first in first out type of data structure (i.e.

FIFO)

• In a queue new elements are added to the queue from one

end called REAR end and the element are always removed

from other end called the FRONT end.

• The people standing in a railway reservation row are an

example of queue.

08-11-2020 Side 96

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

• Each new person comes and stands at the end of the row and person

getting their reservation confirmed get out of the row from the front end.

• The bellow show figure how the operations take place on a stack:

10 20 30 40 50

front rear

08-11-2020 Side 97

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Queue ADT

• Queue operations

• create

• destroy

• enqueue

• dequeue

• is_empty

• Queue property: if x is enQed before y is enQed, then x will be deQed

before y is deQed

F E D C B
enqueue dequeueG A

08-11-2020 Side 98

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Abstract Queue

Also called a first-in–first-out (FIFO) data structure

• Graphically, we may view these operations as follows:

08-11-2020 Side 99

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Alternative terms may be used for the four operations on a queue,

including:

There are two exceptions associated with this abstract data structure:

It is an undefined operation to call either pop or front on an empty queue

08-11-2020 Side 100

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Implementations

We will look at two implementations of queues:

• Singly linked lists

• Circular arrays

Requirements:

• All queue operations must run in Q(1) time

08-11-2020 Side 101

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Linked-List Implementation

Removal is only possible at the front with Q(1) run time

The desired behaviour of an Abstract Queue may be reproduced by

performing insertions at the back

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(1) Q(1)

Erase Q(1) Q(n)

08-11-2020 Side 102

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Single_list Definition

The definition of single list class from Project 1 is:
template <typename Type>

class Single_list {

public:

int size() const;

bool empty() const;

Type front() const;

Type back() const;

Single_node<Type> *head() const;

Single_node<Type> *tail() const;

int count(Type const &) const;

void push_front(Type const &);

void push_back(Type const &);

Type pop_front();

int erase(Type const &);

};

08-11-2020 Side 103

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The queue class using a singly linked list has a single private member

variable: a singly linked list

template <typename Type>

class Queue{

private:

Single_list<Type> list;

public:

bool empty() const;

Type front() const;

void push(Type const &);

Type pop();

};

08-11-2020 Side 104

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Array Implementation

A one-ended array does not allow all operations to

occur in Q(1) time

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(n) Q(1)

Erase Q(n) Q(1)

08-11-2020 Side 105

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Using a two-ended array, Q(1) are possible by pushing at the

back and popping from the front

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(1) Q(1)

Remove Q(1) Q(1)

08-11-2020 Side 106

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Abstract Deque

An Abstract Deque (Deque ADT) is an abstract data structure which

emphasizes specific operations:

• Uses a explicit linear ordering

• Insertions and removals are performed individually

• Allows insertions at both the front and back of the deque

08-11-2020 Side 107

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The operations will be called

front back

push_front push_back

pop_front pop_back

There are four errors associated with this abstract data type:

• It is an undefined operation to access or pop from an empty deque

08-11-2020 Side 108

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Applications

Useful as a general-purpose tool:

• Can be used as either a queue or a stack

Problem solving:

• Consider solving a maze by adding or removing a constructed path at

the front

• Once the solution is found, iterate from the back for the solution

08-11-2020 Side 109

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Linked List

• A linked list is a data structure where each object is stored in a node

• As well as storing data, the node must also contain a

reference/pointer to the node containing the next item of data

• We must dynamically create the nodes in a linked list

• Thus, because new returns a pointer, the logical manner in which to

track a linked lists is through a pointer

• A Node class must store the data and a reference to the next node

(also a pointer)

08-11-2020 Side 110

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Node Class

The node must store data and a pointer:

class Node {

public:

Node(int = 0, Node * = nullptr);

int value() const;

Node *next() const;

private:

int node_value;

Node *next_node;

};

08-11-2020 Side 111

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Node Constructor

The constructor assigns the two member variables based on

the arguments

List::Node::Node(int e, Node *n):

node_value(e),

next_node(n) {

// empty constructor

}

The default values are given in the class definition:

class Node {
public:

Node(int = 0, Node * = nullptr);
int value() const;
Node *next() const;

private:
int node_value;
Node *next_node;

};

08-11-2020 Side 112

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Accessors

The two member functions are accessors which simply return the

node_value and the next_node member variables, respectively

int List::Node::value() const {
return node_value;

}

List::Node *List::Node::next() const {

return next_node;

}

Member functions that do not change the object acted upon are variously

called accessors, readonly functions, inspectors, and, when it involves

simply returning a member variable, getters

08-11-2020 Side 113

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Structure

To begin, let us look at the internal representation of a linked list

Suppose we want a linked list to store the values

42 95 70 81

in this order

A linked list uses linked allocation, and therefore each node may appear

anywhere in memory

Also the memory required for each node equals the memory required by the

member variables

• 4 bytes for the linked list (a pointer)

• 8 bytes for each node (an int and a pointer)

• We are assuming a 32-bit machine

08-11-2020 Side 114

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Such a list could occupy memory as follows:

Linked List Object

08-11-2020 Side 115

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The next_node pointers store the addresses of the next node in

the list

08-11-2020 Side 116

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Because the addresses are arbitrary, we can remove

that information:

08-11-2020 Side 117

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

We will clean up the representation as follows:

We do not specify the addresses because they are arbitrary and:

• The contents of the circle is the value

• The next_node pointer is represented by an arrow

list_

08-11-2020 Side 118

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Operations

First, we want to create a linked list

We also want to be able to:

• insert into,

• access, and

• erase from

the values stored in the linked list

08-11-2020 Side 119

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

We can do them with the following operations:

• Adding, retrieving, or removing the value at the front of the

linked list

void push_front(int);

int front() const;

void pop_front();

• We may also want to access the head of the linked list

Node *begin() const;

08-11-2020 Side 120

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

All these operations relate to the first node of the linked list

We may want to perform operations on an arbitrary node of the

linked list, for example:

• Find the number of instances of an integer in the list:

int count(int) const;

• Remove all instances of an integer from the list:

int erase(int);

08-11-2020 Side 121

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Linked Lists

Additionally, we may wish to check the state:

• Is the linked list empty?

bool empty() const;

• How many objects are in the list?

int size() const;

The list is empty when the list_head pointer is set to nullptr

08-11-2020 Side 122

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Consider this simple (but incomplete) linked list class:

class List {

public:

class Node {...};

List();

// Accessors

bool empty() const;

int size() const;

int front() const;

Node *begin() const;

Node *end() const;

int count(int) const;

// Mutators

void push_front(int);

int pop_front();

int erase(int);

private:

Node *list_head;

};

08-11-2020 Side 123

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The constructor initializes the linked list

We do not count how may objects are in this list, thus:

• we must rely on the last pointer in the linked list to point to a special value

• in C++, that standard value is nullptr

08-11-2020 Side 124

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Allocation

The constructor is called whenever an object is created, either:

Statically

The statement List ls; defines ls to be a linked list and the

compiler deals with memory allocation

Dynamically

The statement

List *pls = new List();
requests sufficient memory from the OS to store an instance of the class

• In both cases, the memory is allocated and then the constructor is called

08-11-2020 Side 125

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Static Allocation

Example:

int f() {

List ls;

// ls is declared as a local variable on the stack

ls.push_front(3);

cout << ls.front() << endl;

// The return value is evaluated

// The compiler then calls the destructor for local variables

// The memory allocated for 'ls' is deallocated

return 0;

}

08-11-2020 Side 126

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Dynamic Allocation

Example:

List *f(int n) {

List *pls = new List(); // pls is allocated memory by the OS

pls->push_front(n);

cout << pls->front() << endl;

// The address of the linked list is the return value

// After this, the 4 bytes for the pointer 'pls' is deallocated

// The memory allocated for the linked list is still there

return pls;

}

08-11-2020 Side 127

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Static Allocation

List *f() {

List ls; // ls is declared as a local variable on the stack

ls.push_front(3);

cout << ls.front() << endl;

// The return value is evaluated

// The compiler then calls the destructor for local variables

// The memory allocated for 'ls' is deallocated

return &ls;

}

08-11-2020 Side 128

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Using an array?

Suppose we store this linked list in an array?

list_head = 5;
list_tail = 2;

0 1 2 3 4 5 6 7

A E P S C

6 -1 0 3 2

08-11-2020 Side 129

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Rather than using, -1, use a constant assigned that value
• This makes reading your code easier

0 1 2 3 4 5 6 7

A E P S C

6 NULLPTR 0 3 2

list_head = 5;
list_tail = 2;

08-11-2020 Side 130

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

To achieve this, we must create an array of objects that:

• Store the value

• Store the array index where the next entry is stored

template <typename Type>

class Single_node {

private:

Type node_value;

next_node int;

public:

Type value() const;

int next() const;

};

08-11-2020 Side 131

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Now, memory allocation is done once in the constructor:

template <typename Type>
class Single_list {

private:
int list_capacity;
int list_head;
int list_tail;
int list_size;
Single_node<Type> *node_pool;

static const int NULL;
public:

Single_list(int = 16);
// member functions

};

const int Single_list::NULLPTR = -1;

08-11-2020 Side 132

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

template <typename Type>

Single_list<Type>::Single_list(int n):

list_capacity(std::max(1, n)),

list_head(NULLPTR),

list_tail(NULLPTR),

list_size(0),

node_pool(new Single_node<Type>[n]) {

// Empty constructor

}

08-11-2020 Side 133

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

