
.NET Data Access and Manipulation

ADO.NET

Overview

 What is ADO.NET?

 Disconnected vs. connected data access models

 ADO.NET Architecture

 ADO.NET Core Objects

 Steps of Data Access

 Advanced Techniques and UI Tools

What is ADO.NET?

 A data-access technology that enables applications to
connect to data stores and manipulate data contained
in them in various ways

 Former version was ADO (ActiveX Data Object)

What is ADO.NET?

 An object oriented framework that allows you to
interact with database systems

Objective of ADO.NET

 Support disconnected data architecture,

 Tight integration with XML,

 Common data representation

 Ability to combine data from multiple and varied data
sources

 Optimized facilities for interacting with a database

ADO.NET Architecture

ADO.NET Core Objects

 Core namespace: System.Data

 .NET Framework data providers:

Data Provider Namespace

SQL Server System.Data.SqlClient

OLE DB System.Data.OleDb

ODBC System.Data.Odbc

Oracle System.Data.OracleClient

ADO.NET Core Objects

Object Description

Connection Establishes a connection to a specific data source. (Base
class: DbConnection)

Command Executes a command against a data source. Exposes
Parameters and can execute within the scope of a
Transaction from a Connection. (The base class:
DbCommand)

DataReader Reads a forward-only, read-only stream of data from a data
source. (Base class: DbDataReader)

DataAdapter Populates a DataSet and resolves updates with the data
source. (Base class: DbDataAdapter)

DataTable Has a collection of DataRows and DataColumns
representing table data, used in disconnected model

DataSet Represents a cache of data. Consists of a set of DataTables
and relations among them

Connected Data Access Model

Disconnected Data Access Model

Pros and Cons

Connected Disconnected

Database Resources - +

Network Traffic - +

Memory Usage + -

Data Access - +

Steps of Data Access:

Disconnected Environment
 Defining the connection string
 Defining the connection
 Defining the command
 Defining the data adapter
 Creating a new DataSet object
 SELECT -> fill the dataset object with the result of

the query through the data adapter
 Reading the records from the DataTables in the

datasets using the DataRow and DataColumn
objects

 UPDATE, INSERT or DELETE -> update the database
through the data adapter

using System;

using System.Data;

using System.Data.SqlClient;

namespace SampleClass

{

class Program

{

static void Main(string[] args)

{

string connStr =

Properties.Settings.Default.connStr;

SqlConnection conn = new SqlConnection(connStr);

string queryString = "SELECT * from titles;";

SqlDataAdapter da = new

SqlDataAdapter(queryString,conn);

DataSet ds = new DataSet();

da.fill(ds);

// Work on the data in memory using

// the DataSet (ds) object

}

}

}

E
X

A
M

P
L

E

Disconnected –

Update, Delete, Insert
SqlDataAdapter da = new SqlDataAdapter();

DataSet ds = new DataSet();

SqlCommandBuilder cmdBuilder = new

SqlCommandBuilder(da);

da.Fill(ds);

DataRow dr = ds.Tables[0].Rows[0];

dr.Delete();

da.UpdateCommand = builder.GetUpdateCommand();

da.Update(ds);

DataRow dr = ds.Tables[0].Rows[0];

dr["CustomerName"] = "John";

da.UpdateCommand = builder.GetUpdateCommand();

da.Update(ds);

DELETE

UPDATE

INITIAL CODE

DataRow dr = ds.Tables[0].NewRow();

dr["CustomerName"] = "John";

dr["CustomerSurName"] = "Smith";

ds.Tables[0].Rows.Add(dr);

da.UpdateCommand = builder.GetUpdateCommand();

da.Update(ds);

INSERT

Steps of Data Acces : Connected

Environment

 Create connection

 Create command (select-insert-update-delete)

 Open connection

 If SELECT -> use a DataReader to fetch data

 If UPDATE,DELETE, INSERT -> use command
object’s methods

 Close connection

static void Main()

{

string connectionString =

Properties.Settings.Default.connStr;

string queryString = "SELECT CategoryID, CategoryName FROM

dbo.Categories;";

SqlConnection connection = new

SqlConnection(connectionString);

SqlCommand command = new SqlCommand(queryString,connection);

try

{

connection.Open();

SqlDataReader reader = command.ExecuteReader();

while (reader.Read())

{

Console.WriteLine("\t{0}\t{1}“,reader[0],reader[1]);

}

reader.Close();

connection.close();

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

}

E
X

A
M

P
L

E

Connected – Update, Delete, Insert

 Command class core methods:
ExecuteNonQuery : Executes a SQL

statement against a connection object
ExecuteReader: Executes the CommandText

against the Connection and returns a
DbDataReader

ExecuteScalar: Executes the query and
returns the first column of the first row in the
result set returned by the query

ms-help://MS.VSCC.v80/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref4/html/T_System_Data_Common_DbDataReader.htm

Connected – Update, Delete, Insert

string connString =

Properties.Settings.Default.connStr;

SqlConnection conn = new

SqlConnection(connString);

SqlCommand cmd = new SqlCommand("delete from

Customers" + "where custID=12344", conn);

conn.Open();

cmd.ExecuteNonQuery();

conn.Close();

Can be an update or insert command

Choosing a DataReader or a

Dataset
 The type of functionality application requires

should be considered
 Use a dataset to:

 Cache data locally in your application so that you can
manipulate it

 Remote data between tiers or from an XML Web service
 Interact with data dynamically such as binding to a

Windows Forms control or combining and relating data
from multiple sources

 Perform extensive processing on data without requiring
an open connection to the data source, which frees the
connection to be used by other clients

 If readonly data is needed use DataReader to
boost performance

Best Practices

 Don’t create a new connection string for every
code connecting to DB

 Use app.config file to keep your connection
strings through the application scope

1. Right click on project and select properties
2. Select settings from the left tabbed menu

3. add the connection string to the table and save
project, Name field is the name of the string to
access at runtime

▪ Accessing settings at runtime:

string connStr = Properties.Settings.Default.connStr;

◼ You can keep any other variable to reach at
runtime using this technique

After .NET Framework 2.0

 To minimize the code written by developers new UI
tools and objects have been intoduced with .NET
Framework 2.0

After .NET Framework 2.0

 Strongly Typed vs Untyped Datasets

 Untyped: DataSet and DataTables included are created at
runtime completely using code

 Strongly Typed: Dataset is created at design time, it is
defined by an xsd schema

After .NET Framework 2.0

 TableAdapter

 provides communication between your application and a
database

 Provides update/delete/insert functions

 Encapsulates a SQLDataAdapter object

 MSDN link:

 http://msdn.microsoft.com/en-
us/library/bz9tthwx(VS.80).aspx

http://msdn.microsoft.com/en-us/library/bz9tthwx(VS.80).aspx

After .NET Framework 2.0

 BindingSource
 Binds UI components to a strongly typed Dataset

 Ex: Binds a DataGridView to a DataTable
 Sets a DataSet as a datasource and datamember as a

dataset table
 EndEdit() method: Applies changes made to data

through a GUI control to the data source bound to that
control

 MSDN link:

 http://msdn.microsoft.com/en-
us/library/xxxf124e(VS.80).aspx

http://msdn.microsoft.com/en-us/library/xxxf124e(VS.80).aspx

After .NET Framework 2.0

An example of databinding model

After .NET Framework 2.0

 Binding Navigator
 Used for creating a standardized means for users to

search and change data on a Windows Form
 Used with BindingNavigator with the BindingSource

component to enable users to move through data
records on a form and interact with the records

 MSDN link:
 http://msdn.microsoft.com/en-

us/library/8zhc8d2f(VS.80).aspx

http://msdn.microsoft.com/en-us/library/8zhc8d2f(VS.80).aspx

After .NET Framework 2.0

 TableAdapterManager
 New component in Visual Studio 2008

 Builds upon existing data features (typed datasets and
TableAdapters) and provides the functionality to save
data in related data tables.

 Manages inserts/updates/deletes without violating the
foreign-key constraints

 MSDN link:
 http://msdn.microsoft.com/en-

us/library/bb384426.aspx

http://msdn.microsoft.com/en-us/library/bb384426.aspx

Hands On: Create a DB Navigator

 Create a DB navigator with UI components and
wizards

Hands On: Custom queries

 Create a filter mechanism on an DataGridView with
using custom queries

 Manage datatables and TableAdapters

Hands On: Managing multiple tables

 Create a navigation system with using the relations
between two tables

