

Introduction to .NET Framework

.NET – What Is It?

• Software platform

• Language neutral

• In other words:
 .NET is not a language (Runtime and a library for

writing and executing written programs in any
compliant language)

What Is .NET
• .Net is a new framework for developing

web-based and windows-based applications
within the Microsoft environment.

• The framework offers a fundamental shift
in Microsoft strategy: it moves application
development from client-centric to server-
centric.

.NET – What Is It?

Operating System + Hardware

.NET Framework

.NET Application

Base Class LibraryBase Class Library

Common Language SpecificationCommon Language Specification

Common Language RuntimeCommon Language Runtime

ADO.NET: Data and XMLADO.NET: Data and XML

VBVB VC++VC++ VC#VC#
V

isu
al S

tu
d

io
.N

E
T

V
isu

al S
tu

d
io

.N
E

T

ASP.NET: Web ServicesASP.NET: Web Services
and Web Formsand Web Forms

JScriptJScript ……

WindowsWindows
FormsForms

Framework, Languages, And Tools

The .NET Framework
.NET Framework Services

• Common Language Runtime
• Windows® Forms
• ASP.NET

– Web Forms
– Web Services

• ADO.NET, evolution of ADO
• Visual Studio.NET

Common Language Runtime
(CLR)

•CLR works like a virtual machine in executing
all languages.

•All .NET languages must obey the rules and
standards imposed by CLR. Examples:
– Object declaration, creation and use
– Data types,language libraries
– Error and exception handling
– Interactive Development Environment (IDE)

Common Language Runtime

• Development
– Mixed language applications

• Common Language Specification (CLS)

• Common Type System (CTS)
• Standard class framework
• Automatic memory management

– Consistent error handling and safer execution
– Potentially multi-platform

• Deployment
– Removal of registration dependency
– Safety – fewer versioning problems

Common Language Runtime
Multiple Language Support

• CTS is a rich type system built into the CLR
– Implements various types (int, double, etc)
– And operations on those types

• CLS is a set of specifications that language
and library designers need to follow
– This will ensure interoperability between

languages

Compilation in .NET

Code in VB.NET Code in C#
Code in another
.NET Language

VB.NET compiler C# compiler
Appropriate

Compiler

IL(Intermediate
Language) code

CLR just-in-time
execution

Intermediate Language (IL)
• .NET languages are not compiled to machine code. They

are compiled to an Intermediate Language (IL).

• CLR accepts the IL code and recompiles it to machine
code. The recompilation is just-in-time (JIT) meaning it is
done as soon as a function or subroutine is called.

• The JIT code stays in memory for subsequent calls. In
cases where there is not enough memory it is discarded
thus making JIT process interpretive.

Languages

• Languages provided by MS
– VB, C++, C#, J#, JScript

• Third-parties are building
– APL, COBOL, Pascal, Eiffel, Haskell, ML,

Oberon, Perl, Python, Scheme, Smalltalk…

Windows Forms

• Framework for Building Rich Clients
– RAD (Rapid Application Development)
– Rich set of controls
– Data aware
– ActiveX® Support
– Licensing
– Accessibility
– Printing support
– Unicode support
– UI inheritance

ASP.NET
•ASP.NET,the platform services that allow to program
Web Applications and Web Services in any .NET
language

•ASP.NET Uses .NET languages to generate HTML
pages. HTML page is targeted to the capabilities of the
requesting Browser

•ASP.NET “Program” is compiled into a .NET class and
cached the first time it is called. All subsequent calls use
the cached version.

ASP.NET

• Logical Evolution of ASP
– Supports multiple languages
– Improved performance
– Control-based, event-driven execution model
– More productive
– Cleanly encapsulated functionality

ASP.NET Web Forms

• Allows clean cut code
– Code-behind Web Forms

• Easier for tools to generate

• Code within is compiled then executed

• Improved handling of state information

• Support for ASP.NET server controls
– Data validation
– Data bound grids

ASP.NET Web Services

• A technical definition
– “A programmable application component accessible

via standard Web protocols”

Web Services

• It is just an application…

• …that exposes its features and capabilities
over the network…

• …using XML…

• …to allow for the creation of powerful new
applications that are more than the sum of
their parts…

ADO.NET
(Data and XML)

• New objects (e.g., DataSets)

• Separates connected / disconnected issues

• Language neutral data access

• Uses same types as CLR

• Great support for XML

Visual Studio.NET

• Development tool that contains a rich set of
productivity and debugging features

.NET – Hierarchy, Another View

CLR

CLR

Summary

• The .NET Framework
– Dramatically simplifies development and deployment
– Provides robust and secure execution environment
– Supports multiple programming languages

THE ORIGIN OF .NET

TECHNOLOGY

The Origin of .Net

Technology

• The current technology of .NET has gone

through 3 significant phases of development:

1. OLE technology

2. COM technology

3. .NET technology

Generations of Component

Model

.NET technology

COM technology

OLE technology
Phase 1 early

1990's

Phase 2 1995

Phase 3

late1990's

Interprocess

Communication

Intermodule

Communication

Intersite

Communication

OLE Technology

• Object linking and embedding technology

was developed by Microsoft in early 1990's

to easy interprocess communications

• OLE provides the support to do the

following:
1. To embed documents from one application to

another

2. To enable one application to manipulate

objects located in another application

OLE Technology (Contd.)

• This enabled users to develop application

which required inter-operability between

various products such as MS Word and MS

Excel

COM Technology

• Component Object Model technology was

developed by Microsoft in 1995 to easy

intermodule communications

• The old approach was used for developing

software but when program became too

large and complex, this approach to a

number of problems in terms of

maintainability and software testing to

overcome thus Microsoft introduced the

component-based model for developing

software programs.

COM Technology (Contd.)

• In component-based approach a program is

broken down into a number of independent

components where each one offers a

particular service.

• Each component can be developed and

tested independently and then migrated into

the main system. This technology was

called component object model (COM) and

the software built using this was called

component ware

.NET Technology

• Provide new level of interoperability

compared to COM technology intermodule

communication in COM is replaced by

IL(Intermediate language) by Microsoft in

.NET technology.

• Various .NET Compilers enforce inter-

operability by compiling code into IL

which is automatically compatible with

other IL modules.

.NET Technology (Contd.)

• IL allows for true cross-language

integration.

• .NET includes a host of other technologies

and tools that will enable us to develop

web-based application easily

Compilation in .NET

Code in VB.NET Code in C#
Code in another

.NET Language

VB.NET compiler C# compiler
Appropriate

Compiler

IL(Intermediate

Language) code

CLR just-in-time

execution

COMMON

LANGUAGE

RUNTIME (CLR)

Common Language

Runtime (CLR) in C#

• CLR is the basic and Virtual Machine component of

the .NET Framework.

• It is the run-time enviornment in the .NET

Framework that runs the codes and helps in making

the development process easier by providing the

various services.

• Basically, it is responsible for managing the

execution of .NET programs regardless of any .NET

programming language.

Common Language Runtime

(CLR) in C# (Contd.)

• Internally, CLR implements the VES(Virtual

Execution System) which is defined in the

Microsoft’s implementation of the CLI(Common

Language Infrastructure).

• The code that runs under the Common Language

Runtime is termed as the Managed Code.

• In other words, you can say that CLR provides a

managed execution environment for the .NET

programs by improving the security, including the

cross-language integration and a rich set of class

libraries etc.

Common Language Runtime

(CLR) in C# (Contd.)

• CLR is present in every .NET framework version.

CLR VERSIONS .NET FRAMEWORK VERSIONS

1.0 1.0

1.1 1.1

2.0 2.0

2.0 3.0

2.0 3.5

4 4

4 4.5(also 4.5.1 & 4.5.2)

4 4.6(also 4.6.1 & 4.6.2)

4 4.7(also 4.7.1 & 4.7.2)

Role of CLR in the execution

of a C#

• How CLR is

associated with

the operating

system/hardware

along with the

class libraries.

Role of CLR in the execution of a

C# (Contd.)

• Suppose you have written a C# program and save it

in a file which is known as the Source Code.

• Language specific compiler compiles the source

code into the MSIL(Microsoft Intermediate

Language) which is also know as the CIL(Common

Intermediate Language) or IL(Intermediate

Language) along with its metadata.

• Metadata includes the all the types, actual

implementation of each function of the program.

• MSIL is machine independent code.

Role of CLR in the execution of a

C# (Contd.)

• CLR provides the services and runtime environment

to the MSIL code.

• Internally CLR includes the JIT(Just-In-Time)

compiler which converts the MSIL code to machine

code which further executed by CPU.

• CLR also uses the .NET Framework class libraries.

• As CLR is common so it allows an instance of a

class that written in a different language to call a

method of the class which written in another

language.

Main Components of CLR

• Common Language Specification (CLS)

• Common Type System (CTS)

• Garbage Collection (GC)

• Just In – Time Compiler (JIT)

Main Components of CLR

(Contd.)

Main Components of CLR

(Contd.)

• Common Language Specification (CLS):

It is responsible for converting the different .NET

programming language syntactical rules and

regulations into CLR understandable format.

Basically, it provides the Language Interoperability.

Language Interoperability means to provide the

execution support to other programming languages

also in .NET framework.

Main Components of CLR

(Contd.)

• Common Type System (CTS):

Every programming language has its own data type

system, so CTS is responsible for understanding all

the data type systems of .NET programming languages

and converting them into CLR understandable format

which will be a common format.

Main Components of CLR

(Contd.)

• Garbage Collector:

It is used to provide the Automatic Memory

Management feature. If there was no garbage

collector, programmers would have to write the

memory management codes which will be a kind of

overhead on programmers.

• JIT(Just In Time Compiler):

It is responsible for converting the CIL(Common

Intermediate Language) into machine code or

native code using the Common Language Runtime

environment.

Benefits of CLR:

• It improves the performance by providing a rich

interact between programs at run time.

• Enhance portability by removing the need of

recompiling a program on any operating system that

supports it.

• Security also increases as it analyzes the MSIL

instructions whether they are safe or unsafe. Also,

the use of delegates in place of function pointers

enhance the type safety and security.

• Support automatic memory management with the

help of Garbage Collector.

Benefits of CLR: (Contd.)

• Provides cross-language integration because CTS

inside CLR provides a common standard that

activates the different languages to extend and share

each other’s libraries.

• Provides support to use the components that

developed in other .NET programming languages.

• Provide language, platform, and architecture

independence.

• It allows easy creation of scalable and multithreaded

applications, as the developer has no need to think

about the memory management and security issues.

Architecture of Common

Language Runtime (CLR)

Multiple components in the

architecture of Common

Language Runtime

• Base Class Library Support: The Common

Language Runtime provides support for the base

class library. The BCL contains multiple libraries

that provide various features such as Collections,

I/O, XML, DataType definitions, etc. for the

multiple .NET programming languages.

• Thread Support: The CLR provides thread support

for managing the parallel execution of multiple

threads. The System. Threading class is used as the

base class for this.

Multiple components in the

architecture of Common

Language Runtime(Contd.)

• COM Marshaller: Communication with the COM

(Component Object Model) component in the .NET

application is provided using the COM marshaller.

This provides the COM interoperability support.

• Type Checker: Type safety is provided by the type

checker by using the Common Type System (CTS)

and the Common Language Specification (CLS)

that are provided in the CLR to verify the types that

are used in an application.

Multiple components in the

architecture of Common

Language Runtime(Contd.)
• Exception Manager: The exception manager in the

CLR handles the exceptions regardless of the .NET

Language that created them. For a particular

application, the catch block of the exceptions are

executed in case they occur and if there is no catch

block then the application is terminated.

• Security Engine: The security engine in the CLR

handles the security permissions at various levels such

as the code level, folder level, and machine level. This

is done using the various tools that are provided in the

.NET framework.

Multiple components in the

architecture of Common

Language Runtime(Contd.)

• Debug Engine: An application can be debugged

during the run-time using the debug engine. There are

various ICorDebug interfaces that are used to track the

managed code of the application that is being

debugged.

• JIT Compiler: The JIT compiler in the CLR converts

the Microsoft Intermediate Language (MSIL) into the

machine code that is specific to the computer

environment that the JIT compiler runs on.

Multiple components in the

architecture of Common

Language Runtime(Contd.)
• Code Manager: The code manager in CLR manages

the code developed in the .NET framework i.e. the

managed code. The managed code is converted to

intermediate language by a language-specific compiler

and then the intermediate language is converted into

the machine code by the Just-In-Time (JIT) compiler.

• Garbage Collector: Automatic memory management

is made possible using the garbage collector in CLR.

The garbage collector automatically releases the

memory space after it is no longer required so that it

can be reallocated.

Multiple components in the

architecture of Common

Language Runtime(Contd.)

• CLR Loader: Various modules, resources,

assemblies, etc. are loaded by the CLR loader. Also,

this loader loads the modules on demand if they are

actually required so that the program initialization

time is faster, and the resources consumed are lesser.

COMMON TYPE

SYSTEM (CTS)

Common Type System

(CTS)

• The language interoperability, and .NET Class

Framework, are not possible without all the

language sharing the same data types.

• What this means is that an "int" should mean the

same in VB, VC++, C# and all other .NET

compliant languages. Same idea follows for all the

other data types.

• This is achieved through introduction of Common

Type System (CTS).

Common Type System

(CTS)(Contd.)

• Common type system (CTS) is an important part of

the runtimes support for cross language integration.

The common type system performs the following

functions:

• Establishes a framework that enables cross-

language integration, type safety, and high-

performance code execution.

• Provides an object-oriented model that supports the

complete implementation of many programming

languages.

Common Type System

(CTS)(Contd.)

• The common type system supports two general

categories of types:

1. Value types

• Value types directly contain their data, and

instances of value types are either allocated on

the stack or allocated inline in a structure.

• Value types can be built-in, user-defined or

enumerations types.

Common Type System

(CTS)(Contd.)

2. Reference types:

• Reference types stores a reference to the value's

memory address and are allocated on the heap.

• Reference types can be self-describing types,

pointers types, or interface types.

• The type of a reference type can be determined

from values of self-describing types.

• Self-describing types are further split into arrays

and class types are user-defined classes, boxed

value types, and delegates.

Common Type System

(CTS)(Contd.)

Common Type System

(CTS)(Contd.)

COMMON

LANGUAGE

SPECIFICATION(CLS)

Common Language

Specification(CLS)

It is responsible for converting the different .NET

programming language syntactical rules and

regulations into CLR understandable format.

Basically, it provides the Language Interoperability.

Language Interoperability means to provide the

execution support to other programming languages

also in .NET framework.

Common Language

Specification(CLS)Contd.)

Language Interoperability can be achieved in two ways :

1. Managed Code: The MSIL code which is managed

by the CLR is known as the Managed Code. For

managed code CLR provides three .NET facilities:

• CAS(Code Access Security)

• Exception Handling

• Automatic Memory Management

Common Language

Specification(CLS)Contd.)

2. Unmanaged Code: Before .NET development the

programming language like .COM Components &

Win32 API do not generate the MSIL code. So these

are not managed by CLR rather managed by

Operating System.

Common Language

Specification(CLS)Contd.)

MICROSOFT

INTERMEDIATE

LANGUAGE(MSIL)

MICROSOFT INTERMEDIATE

LANGUAGE(MSIL)

• The Microsoft Intermediate Language (MSIL), also

known as the Common Intermediate Language

(CIL) is a set of instructions that are platform

independent and are generated by the language-

specific compiler from the source code.

• The MSIL is platform independent and

consequently, it can be executed on any of the

Common Language Infrastructure supported

environments such as the Windows .NET runtime.

MICROSOFT INTERMEDIATE

LANGUAGE (MSIL)(Contd.)

• The MSIL is converted into a particular computer

environment specific machine code by the JIT

compiler. This is done before the MSIL can be

executed.

• The MSIL is converted into the machine code on a

requirement basis i.e. the JIT compiler compiles the

MSIL as required rather than the whole of it.

• Execution process in Common Language Runtime

(CLR): The execution process that includes the

creation of the MSIL and the conversion of the MSIL

into machine code by the JIT compiler.

MICROSOFT INTERMEDIATE

LANGUAGE (MSIL)(Contd.)

MICROSOFT INTERMEDIATE

LANGUAGE (MSIL)(Contd.)

• The source code is converted into the MSIL by a

language-specific compiler in the compile time of the

CLR. Also, along with the MSIL, metadata is also

produced in the compilation. The metadata contains

information such as the definition and signature of the

types in the code, runtime information, etc.

• A Common Language Infrastructure (CLI) assembly is

created by assembling the MSIL. This assembly is

basically a compiled code library that is used for

security, deployment, versioning, etc. and it is of two

types i.e. process assembly (EXE) and library

assembly (DLL).

MICROSOFT INTERMEDIATE

LANGUAGE (MSIL)(Contd.)

• The JIT compiler then converts the Microsoft

Intermediate Language(MSIL) into the machine code

that is specific to the computer environment that the

JIT compiler runs on. The MSIL is converted into the

machine code on a requirement basis i.e. the JIT

compiler compiles the MSIL as required rather than

the whole of it.

• The machine code obtained using the JIT compiler is

then executed by the processor of the computer.

JUST IN TIME(JIT)

COMPILATION

OVERVIEW

• Compilation vs Interpretation

• JVM and Common Language Runtime

• What is Just-In-Time Compilation?

• Why is Just-In-Time Compilation?

Compilation vs Interpretation

Compilation

Pros

> Programs run faster

Cons

> Compilation overhead

> Programs are typically

bigger

> Programs are not portable

> No run-time information

Interpretation

Pros

> Programs are typically smaller

> Programs tend to be more

portable

> Access to run-time information

Cons

> Programs run slower

JVM AND COMMON

LANGUAGE RUNTIME

Virtual Machine: a software execution engine for a program

written in a machine-independent language

– Ex., Java bytecodes, CLI, Pascal p-code, Smalltalk v-code

Step 1: syntax analysis and generate intermediate code, e.g.,

bytecode

Step 2: Interpret/compile the code on the VM (managed runtime)

for portability, better safety checks

Microsoft Common Language Runtime: The immediate language

can be shared by multiple source languages

(e.g., C# and managed C++)

CIL is a CPU- and platform-independent instruction set.

JVM AND COMMON

LANGUAGE RUNTIME

• The Common Language Runtime (CLR) manages

the execution of code.

• CLR uses Just-In-Time (JIT) compiler to compile the

CIL code to the native code for device used.

• Through the runtime compilation process CIL code is

verified for safety during runtime, providing better

security and reliability than natively compiled

binaries.

MICROSOFT INTERMEDIATE

LANGUAGE (MSIL)(Contd.)

MICROSOFT INTERMEDIATE

LANGUAGE (MSIL)(Contd.)

• The source code is converted into the MSIL by a

language-specific compiler in the compile time of the

CLR. Also, along with the MSIL, metadata is also

produced in the compilation. The metadata contains

information such as the definition and signature of the

types in the code, runtime information, etc.

• A Common Language Infrastructure (CLI) assembly is

created by assembling the MSIL. This assembly is

basically a compiled code library that is used for

security, deployment, versioning, etc. and it is of two

types i.e. process assembly (EXE) and library

assembly (DLL).

MICROSOFT INTERMEDIATE

LANGUAGE (MSIL)(Contd.)

• The JIT compiler then converts the Microsoft

Intermediate Language(MSIL) into the machine code

that is specific to the computer environment that the

JIT compiler runs on. The MSIL is converted into the

machine code on a requirement basis i.e. the JIT

compiler compiles the MSIL as required rather than

the whole of it.

• The machine code obtained using the JIT compiler is

then executed by the processor of the computer.

“The .NET Framework class library is a library
of classes, interfaces, and value types that
provide access to system functionality. It is
the foundation on which .NET Framework
applications, components, and controls are
built.”

The System Library contains fundamental
classes and base classes that define
commonly-used value and reference data
types, events and event handlers, interfaces,
attributes, and processing exceptions.

 Input/output library in System.IO namespace

 Compiled into mscorlib.dll assembly

 Support provided for:
◦ file and directory management

◦ text files

◦ binary files

 Database access…

 Database access provided by System.Data.*
namespaces

 Compiled into System.Data.dll assembly
 Known collectively as ADO.NET
◦ native support for SQL Server and Oracle
◦ support for other databases via older OleDB technology
◦ requires a knowledge of SQL

 Core namespaces:
◦ general: System.Data, System.Data.Common
◦ SQL Server: System.Data.SqlClient

◦ Oracle: System.Data.OracleClient

◦ OleDB: System.Data.OleDb

 Data structures…

 Data structures in .NET are generally known as
Collections

 Located in the namespace System.Collections

 Compiled into mscorlib.dll assembly

 Defined in terms of object for generic use

 Core classes:
– Array

– ArrayList

– Hashtable

– Stack

– Queue

Thank You

C -Sharp Language

(C#)

What is C#

• C# is pronounced as "C-Sharp".

• It is an object-oriented programming language

provided by Microsoft that runs on .Net Framework.

• By the help of C# programming language, we can

develop different types of secured and robust

applications:

• Window applications

• Distributed applications

• Web applications

• Web service applications

• Database applications etc.

What is C#(Contd.)

• C# is approved as a standard by ECMA (European

Computer Manufacturers Association) and

International Organization for Standardization (ISO).

• C# is designed for CLI (Common Language

Infrastructure). CLI is a specification that describes

executable code and runtime environment.

• C# programming language is influenced by C++, Java,

Eiffel, Modula-3, Pascal etc. languages.

Java vs C#
No. Java C#

1) Java is a high level,
robust, secured and
object-oriented
programming language
developed by Oracle.

C# is an object-oriented
programming language developed
by Microsoft that runs on .Net
Framework.

2) Java programming
language is designed to be
run on a Java platform, by
the help of Java Runtime
Environment (JRE).

C# programming language is
designed to be run on
the Common Language Runtime
(CLR).

3) Java type safety is safe. C# type safety is unsafe.

4) In java, built-in data types
that are passed by value
are called primitive
types.

In C#, built-in data types that are
passed by value are called simple
types.

Java vs C# (Contd.)

No. Java C#

5) Arrays in Java are direct
specialization of Object.

Arrays in C# are specialization
of System.

6) Java does not
support conditional
compilation.

C# supports conditional
compilation using preprocessor
directives.

7) Java doesn't support goto
statement.

C# supports goto statement.

8) Java doesn't
support structures and
unions.

C# supports structures and
unions.

C# History

• C# is pronounced as "C-

Sharp".

• It is an object-oriented

programming language

provided by Microsoft that

runs on .Net Framework.

• Anders Hejlsberg is known

as the founder of C#

language.

C# History (Contd.)

• It is based on C++ and Java, but it has many

additional extensions used to perform

component-oriented programming approach.

• C# has evolved much since their first release in

the year 2002.

• It was introduced with .NET Framework 1.0 and

the current version of C# is 5.0.

C# Version History

C# Features

1. Simple

2. Modern programming language

3. Object oriented

4. Type safe

5. Interoperability

6. Scalable and Updateable

7. Component oriented

8. Structured programming language

9. Rich Library

10. Fast speed

C# Features

C# Features (Contd.)

1. Simple

C# is a simple language in the sense that it provides

structured approach (to break the problem into

parts), rich set of library functions, data types etc.

2. Modern Programming Language

C# programming is based upon the current trend and

it is very powerful and simple for building scalable,

interoperable and robust applications.

C# Features (Contd.)

3. Object Oriented

C# is object oriented programming language. OOPs

makes development and maintenance easier where

as in Procedure-oriented programming language it is

not easy to manage if code grows as project size

grow.

4. Type Safe

C# type safe code can only access the memory

location that it has permission to execute. Therefore

it improves a security of the program.

C# Features (Contd.)

5. Interoperability

Interoperability process enables the C# programs to

do almost anything that a native C++ application can

do.

6. Scalable and Updateable

C# is automatic scalable and updateable

programming language. For updating our application

we delete the old files and update them with new

ones.

C# Features (Contd.)

7. Component Oriented

C# is component oriented programming language. It

is the predominant software development

methodology used to develop more robust and

highly scalable applications.

8. Scalable and Updateable

C# is a structured programming language in the

sense that we can break the program into parts using

functions. So, it is easy to understand and modify.

C# Features (Contd.)

9. Rich Library

C# provides a lot of inbuilt functions that makes the

development fast.

10. Fast Speed

The compilation and execution time of C# language

is fast.

C# Example: Hello World

In C# programming language, a simple "hello

world" program can be written by multiple ways.

Let's see the top 4 ways to create a simple C#

example:

• Simple Example

• Using System

• Using public modifier

• Using namespace

C# Example (Contd.)

class Program

{

static void Main(string[] args)

{

System.Console.WriteLine("Hello World!"

);

}

}

Output:

Hello World!

C# Example(Contd.)

Description

class: is a keyword which is used to define class.

Program: is the class name. A class is a blueprint or

template from which objects are created. It can have

data members and methods. Here, it has only Main

method.

static: is a keyword which means object is not

required to access static members. So it saves

memory.

C# Example(Contd.)

Description

void: is the return type of the method. It does't return

any value. In such case, return statement is not

required.

Main: is the method name. It is the entry point for

any C# program. Whenever we run the C# program,

Main() method is invoked first before any other

method. It represents start up of the program.

C# Example(Contd.)

Description

string[] args: is used for command line arguments

in C#. While running the C# program, we can pass

values. These values are known as arguments which

we can use in the program.

System.Console.WriteLine("HelloWorld!"): Here,

System is the namespace. Console is the class

defined in System namespace. The WriteLine() is the

static method of Console class which is used to write

the text on the console.

C# Example: Using System

If we write using System before the class, it means

we don't need to specify System namespace for

accessing any class of this namespace. Here, we are

using Console class without specifying

System.Console.

C# Example: Using System
(Contd.)

using System;

class Program

{

static void Main(string[] args)

{

Console.WriteLine("Hello World!");

}

}

Output:

Hello World!

C# Example: Using public

modifier

We can also specify public modifier before class and

Main() method. Now, it can be accessed from

outside the class also.

C# Example: Using public

modifier(Contd.)

using System;

public class Program

{

public static void Main(string[] args)

{

Console.WriteLine("Hello World!");

}

}

Output:

Hello World!

C# Example: Using namespace

We can create classes inside the namespace. It is

used to group related classes. It is used to categorize

classes so that it can be easy to maintain.

C# Example: Using namespace
(Contd.)

using System;

namespace ConsoleApplication1

{

public class Program

{

public static void Main(string[] args)

{

Console.WriteLine("Hello World!");

}

}

}
Output:

Hello World!

C# Variables

• A variable is a name of memory location.

• It is used to store data.

• Its value can be changed and it can be reused

many times.

• It is a way to represent memory location through

symbol so that it can be easily identified.

C# Variables
(Contd.)

The basic variable type available in C# can be

categorized as:

Variable Type Example

Decimal types decimal

Boolean types True or false value, as
assigned

Integral types int, char, byte, short, long

Floating point
types

float and double

Nullable types Nullable data types

C# Variables
(Contd.)

Let's see the syntax to declare a variable:

type variable_list;

The example of declaring variable is given below:

int i, j;

double d;

float f;

char ch;

Here, i, j, d, f, ch are variables and int, double, float,

char are data types.

C# Variables
(Contd.)

We can also provide values while declaring the

variables as given below:

int i=2,j=4; //declaring 2 variable of integer type

float f=40.2;

char ch='B';

Rules for defining variables

• A variable can have alphabets, digits and

underscore.

• A variable name can start with alphabet and

underscore only. It can't start with digit.

• No white space is allowed within variable name.

• A variable name must not be any reserved word

or keyword e.g. char, float etc.

Rules for defining variables

Valid variable names:

int x;

int _x;

int k20;

Invalid variable names:

int 4;

int x y;

int double;

Data Types

Data Types (Contd.)

There are 3 types of data types in C# language.

Types Data Types

Value Data Type short, int, char, float,
double etc

Reference Data Type String, Class, Object and
Interface

Pointer Data Type Pointers

Value Data Types

The value data types are integer-based and floating-

point based. C# language supports both signed and

unsigned literals.

There are 2 types of value data type in C# language.

1) Predefined Data Types - such as Integer, Boolean,

Float, etc.

2) User defined Data Types - such as Structure,

Enumerations, etc.

Value Data Types (Contd.)

The memory size of data types may change

according to 32 or 64 bit operating system.

Let's see the value data types. It size is given

according to 32 bit OS.

Value Data Types (Contd.)

Data Types Memory Size Range

char 1 byte -128 to 127

signed char 1 byte -128 to 127

unsigned char 1 byte 0 to 127

short 2 byte -32,768 to 32,767

signed short 2 byte -32,768 to 32,767

Value Data Types (Contd.)

unsigned short 2 byte 0 to 65,535

int 4 byte -2,147,483,648 to -
2,147,483,647

signed int 4 byte -2,147,483,648 to -
2,147,483,647

unsigned int 4 byte 0 to 4,294,967,295

long 8 byte ?9,223,372,036,854,775,
808 to
9,223,372,036,854,775,8
07

Value Data Types (Contd.)

signed long 8 byte ?9,223,372,036,854
,775,808 to
9,223,372,036,854,
775,807

unsigned long 8 byte 0 -
18,446,744,073,70
9,551,615

float 4 byte 1.5 * 10
-45

- 3.4 *
10

38
, 7-digit

precision

double 8 byte 5.0 * 10
-324

- 1.7 *
10

308
, 15-digit

precision

decimal 16 byte at least -7.9 *
10

?28
- 7.9 * 10

28
,

with at least 28-
digit precision

Reference Data Type

The reference data types do not contain the actual

data stored in a variable, but they contain a reference

to the variables.

If the data is changed by one of the variables, the

other variable automatically reflects this change in

value.

There are 2 types of reference data type in C#

language.

1) Predefined Types - such as Objects, String.

2) User defined Types - such as Classes, Interface.

Pointer Data Type (Contd.)

The pointer in C# language is a variable, it is also

known as locator or indicator that points to an

address of a value.

Pointer Data Type

Symbols used in pointer

Symbol Name Description

& (ampersand
sign)

Address operator Determine the
address of a
variable.

* (asterisk sign) Indirection
operator

Access the value
of an address.

Pointer Data Type (Contd.)

Declaring a pointer

The pointer in C# language can be declared using *

(asterisk symbol).

int * a; //pointer to int

char * c; //pointer to char

C# operators

An operator is simply a symbol that is used to

perform operations. There are following types of

operators to perform different types of operations in

C# language.

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operators

Unary Operators

Ternary Operators

Misc Operators

C# operators

Precedence of Operators in C#

• The precedence of operator specifies that which

operator will be evaluated first and next. The

associativity specifies the operators direction to

be evaluated, it may be left to right or right to

left.

• Let's understand the precedence by the example

given below:

int data= 10+ 5*5

• The "data" variable will contain 35 because *

(multiplicative operator) is evaluated before +

(additive operator).

Precedence of Operators in C#

Category (By

Precedence)

Operator(s) Associativity

Unary + - ! ~ ++ --
(type)* & sizeof

Right to Left

Additive + - Left to Right

Multiplicative % / * Left to Right

Relational < > <= >= Left to Right

Shift << >> Left to Right

Equality == != Right to Left

Logical AND & Left to Right

Precedence of Operators in C#

Category (By

Precedence)

Operator(s) Associativity

Logical OR | Left to Right

Logical XOR ^ Left to Right

Conditional OR || Left to Right

Conditional AND && Left to Right

Null Coalescing ?? Left to Right

Ternary ?: Right to Left

Assignment = *= /= %= += - =
<<= >>= &= ^= |=
=>

Right to Left

C# Keywords

• A keyword is a reserved word. You cannot use it

as a variable name, constant name etc.

• In C# keywords cannot be used as identifiers.

However, if we want to use the keywords as

identifiers, we may prefix the keyword with @

character.

C# Keywords (Contd.)

abstract base as bool break catch case

byte char checked class const continue decimal

private protecte
d

public return readonly ref sbyte

explicit extern false finally fixed float for

foreach goto if implicit in in
(generic
modifier
)

int

ulong ushort uncheck
ed

using unsafe virtual void

C# Keywords (Contd.)

null object operato
r

out out
(generic
modifier
)

override params

default delegat
e

do double else enum event

sealed short sizeof stackall
oc

static string struct

switch this throw true try typeof uint

abstract base as bool break catch case

volatile while

C# Literals

Outline

• Integer Literals

• Floating-point Literals

• Character Literals

• String Literals

• Null Literals

• Boolean Literals

C# Literals

• The fixed values are called as Literal.

• Literal is a value which is used by the variables.

• Values can be either an integer, float or string etc.

• // Here 100 is a constant/literal.

int x = 100;

C# Literals (Contd.)

• Literals can be of following types:

• Integer Literals

• Floating-point Literals

• Character Literals

• String Literals

• Null Literals

• Boolean Literals

Integer Literals

• A literal of integer type is know as the integer literal.

• It can be octal, decimal or hexadecimal constant.

• No prefix is required for the decimal numbers.

• A suffix can also be used with the integer literals like

U or u are used for unsigned numbers while l or L are

used for long numbers.

Integer Literals (Contd.)

• For Integral data types (byte, short, int, long), we can

specify literals in 3 ways:

• Decimal literals (Base 10) : In this form the allowed

digits are 0-9.

• int x = 101;

• Octal literals (Base 8) : In this form the allowed digits

are 0-7.

• // The octal number should be prefix with 0.

int x = 0146;

Integer Literals (Contd.)

• Hexa-decimal literals (Base 16) : In this form the

allowed digits are 0-9 and characters are a-f. We can

use both uppercase and lowercase characters. As we

know that c# is a case-sensitive programming

language but here c# is not case-sensitive.

• // The hexa-decimal number should be prefix

// with 0X or 0x.

• int x = 0X123Face;

Integer Literals Example

• 07778 // invalid: 8 is not an octal digit

• 045uu // invalid: suffix (u) is repeated

• 456 // valid decimal literal

• 02453 // valid octal literal

• 0x65d // valid hexadecimal literal

• 12356 // valid int literal

• 304U // valid unsigned int literal

• 3078L // valid long literal

• 965UL // valid unsigned long literal

Integer Literals Program

// C# program to illustrate the use of Integer Literals

using System;

class IntergerLiteral {

// Main method

public static void Main(String []args) {

// decimal-form literal

int a = 101;

Output

101

145

64206

// octal-form literal

int b = 0145;

// Hexa-decimal form literal

int c = 0xFace;

Console.WriteLine(a);

Console.WriteLine(b);

Console.WriteLine(c); } }

Floating-point Literals

• Floating-point Literals: The literal which has an integer part, a

decimal point, a fractional part and an exponent part is known

as the floating point literal. These can be represented either in

decimal form or exponential form.

• Examples:

• Double d = 3.14145 // Valid

• Double d = 312569E-5 // Valid

• Double d = 125E // invalid: Incomplete exponent

• Double d = 784f // valid

• Double d = .e45 // invalid: missing integer or fraction

Floating-point Literals Program

// C# program to illustrate the use of

// floating-point literals

using System;

class FloatLiteral {

// Main Method

public static void Main(String []args) {

// decimal-form literal

double a = 101.230;

// It also acts as decimal literal

double b = 0123.222;

Console.WriteLine(a);

Console.WriteLine(b); } }

Output:

101.23

123.222

Note: By default, every floating-point

literal is of double type and hence we

can’t assign directly to float variable.

But we can specify floating-point literal

as float type by suffixed with f or F. We

can specify explicitly floating point

literal as the double type by suffixed

with d or D, of course, this convention

is not required.

Character Literals

• For character data types we can specify literals in 3 ways:

• Single quote : We can specify literal to char data type as single

character within single quote.

• char ch = 'a';

• Unicode Representation : We can specify char literals in

Unicode representation ‘\uxxxx’. Here xxxx represents 4

hexadecimal numbers.

• char ch = '\u0061';// Here /u0061 represent a.

Character Literals

• Escape Sequence : Every escape character can be specify as

char literals.

• char ch = '\n';
ESCAPE SEQUENCE MEANING

\\ \ character

\’ ‘ character

\? ? character

\” ” character

\b Backspace

\a Alert or Bell

\n New Line

\f Form Feed

\r Carriage Return

\v Vertical Tab

\xhh…
Hexadecimal number

of one or more digits

Character Literals Example

// C# program to illustrate the use of char literals

using System;

class CharLiteral {

// Main Method

public static void Main(String []args) {

// character literal within single quote

char ch = 'a';

Output:

a

a

Hello

World !

// Unicode representation

char c = '\u0061';

Console.WriteLine(ch);

Console.WriteLine(c);

// Escape character literal

Console.WriteLine("Hello\n\nWorld\t!");

} }

String Literals

• Literals which are enclosed in double quotes(“”) or starts with

@”” are known as the String literals.

• Examples:

• String s1 = "Hello World!";

• String s2 = @"Hello World!";

String Literals

// C# program to illustrate the use of String literals

using System;

class StringLiteral {

// Main Method

public static void Main(String []args) {

String s = "Hello World!";

String s2 = @"Hello World!";

Output:

Hello World!

Hello World!

// If we assign without "" then it

// treats as a variable

// and causes compiler error

// String s1 = World;

Console.WriteLine(s);

Console.WriteLine(s2); } }

Boolean Literals

• Only two values are allowed for Boolean literals i.e. true and

false.

• Example:

• bool b = true;

• bool c = false

Boolean Literals Program

// C# program to illustrate the use

// of boolean literals

using System;

class BoolLiteral {

// Main Method

public static void Main(String []args)

{

const bool b = true;

bool c = false;

Output:

True
False

// these will give compile time error

// bool d = 0;

// bool e = 1;

// Console.WriteLine(d);

// Console.WriteLine(e);

Console.WriteLine(b);

Console.WriteLine(c); } }

C# Array

Outline

• C# Arrays

• C# Array to Function

• C# Multidimensional Array

• C# Jagged Arrays

• C# Params

• C# Array class

• C# Command Line Args

C# Arrays

• Like other programming languages, array in C# is a

group of similar types of elements that have

contiguous memory location.

• In C#, array is an object of base type System.Array.

• In C#, array index starts from 0.

• We can store only fixed set of elements in C# array.

Advantages of C# Array

• Code Optimization (less code)

• Random Access

• Easy to traverse data

• Easy to manipulate data

• Easy to sort data etc.

Disadvantages of C# Array

• Fixed size

C# Array Types

• There are 3 types of arrays in C# programming:

• Single Dimensional Array

• Multidimensional Array

• Jagged Array

C# Single Dimensional Array

• To create single dimensional array, you need to use

square brackets [] after the type.

• int[] arr = new int[5];//creating array

• You cannot place square brackets after the identifier.

• int arr[] = new int[5];//compile time error

Example of C# array

• Declare, initialize and traverse array
using System;

public class ArrayExample

{

public static void Main(string[] args)

{

int[] arr = new int[5];//creating array

arr[0] = 10;//initializing array

arr[2] = 20;

arr[4] = 30;

//traversing array

for (int i = 0; i < arr.Length; i++)

{

Console.WriteLine(arr[i]);

}

}

}

Output:

10

0

20

0

30

C# Array Example: Declaration

and Initialization at same time

• There are 3 ways to initialize array at the time of

declaration.

• int[] arr = new int[5]{ 10, 20, 30, 40, 50 };

• We can omit the size of array.

• int[] arr = new int[]{ 10, 20, 30, 40, 50 };

• We can omit the new operator also.

• int[] arr = { 10, 20, 30, 40, 50 };

C# Array Example: Declaration

and Initialization at same time

• Let's see the example of array where we are declaring

and initializing array at the same time.
using System;

public class ArrayExample

{

public static void Main(string[] args)

{

int[] arr = { 10, 20, 30, 40, 50 };//Declaration and Initialization of array

//traversing array

for (int i = 0; i < arr.Length; i++)

{

Console.WriteLine(arr[i]);

}

}

}

Output:

10

20

30

40

50

C# Passing Array to Function

• In C#, to reuse the array logic, we can create function.

• To pass array to function in C#, we need to provide

only array name.

• functionname(arrayname);//passing array

C# Passing Array to Function

Example: print array elements

• Let's see an example of C# function which prints the

array elements.
using System;

public class ArrayExample {

static void printArray(int[] arr) {

Console.WriteLine("Printing array elements:");

for (int i = 0; i < arr.Length; i++) {

Console.WriteLine(arr[i]);

} }

public static void Main(string[] args) {

int[] arr1 = { 25, 10, 20, 15, 40, 50 };

int[] arr2 = { 12, 23, 44, 11, 54 };

printArray(arr1);//passing array to function

printArray(arr2);

} }

Output:

Printing array elements:

25

10

20

15

40

50

Printing array elements:

12

23

44

11

54

C# Passing Array to Function

Example: Print minimum number
• Let's see an example of C# array which prints

minimum number in an array using function.
using System;

public class ArrayExample {

static void printMin(int[] arr) {

int min = arr[0];

for (int i = 1; i < arr.Length; i++) {

if (min > arr[i]) {

min = arr[i];

} }

Console.WriteLine("Minimum element is: " + min); }

public static void Main(string[] args) {

int[] arr1 = { 25, 10, 20, 15, 40, 50 };

int[] arr2 = { 12, 23, 44, 11, 54 };

printMin(arr1);//passing array to function

printMin(arr2);

} }

Output:

Minimum element is: 10

Minimum element is: 11

C# Passing Array to Function

Example: Print maximum number
• Let's see an example of C# array which prints

maximum number in an array using function.
using System;

public class ArrayExample {

static void printMax(int[] arr) {

int max = arr[0];

for (int i = 1; i < arr.Length; i++) {

if (max < arr[i]) {

max = arr[i];

} }

Console.WriteLine("Maximum element is: " + max); }

public static void Main(string[] args)

int[] arr1 = { 25, 10, 20, 15, 40, 50 };

int[] arr2 = { 12, 23, 64, 11, 54 };

printMax(arr1);//passing array to function

printMax(arr2); } }

Output:

Maximum element is: 50

Maximum element is: 64

C# Multidimensional Arrays

• The multidimensional array is also known as

rectangular arrays in C#.

• It can be two dimensional or three dimensional.

• The data is stored in tabular form (row * column)

which is also known as matrix.

• To create multidimensional array, we need to use

comma inside the square brackets. For example:

• int[,] arr=new int[3,3];//declaration of 2D array

• int[,,] arr=new int[3,3,3];//declaration of 3D array

C# Multidimensional Array

Example
• Let's see a simple example of multidimensional array

in C# which declares, initializes and traverse two-

dimensional array.
using System;

public class MultiArrayExample {

public static void Main(string[] args) {

int[,] arr=new int[3,3];//declaration of 2D array

arr[0,1]=10;//initialization

arr[1,2]=20;

arr[2,0]=30;

//traversal

for(int i=0;i<3;i++){

for(int j=0;j<3;j++){

Console.Write(arr[i,j]+" "); }

Console.WriteLine();//new line at each row

} } }

Output:

0 10 0

0 0 20

30 0 0

C# Multidimensional Array

Example: Declaration and

initialization at same time
• There are 3 ways to initialize multidimensional array

in C# while declaration.

• int[,] arr = new int[3,3]= { { 1, 2, 3 }, { 4, 5, 6 }, {

7, 8, 9 } };

• We can omit the array size.

• int[,] arr = new int[,]{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8,

9 } };

• We can omit the new operator also.

• int[,] arr = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };

C# Multidimensional Array

Example
• Let's see a simple example of multidimensional array

which initializes array at the time of declaration.

using System;

public class MultiArrayExample {

public static void Main(string[] args) {

int[,] arr = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };//declaration and initializati

on

//traversal

for(int i=0;i<3;i++){

for(int j=0;j<3;j++){

Console.Write(arr[i,j]+" "); }

Console.WriteLine();//new line at each row

}

}

}

Output:

1 2 3

4 5 6

7 8 9

C# Jagged Arrays

• In C#, jagged array is also known as "array of arrays"

because its elements are arrays. The element size of

jagged array can be different.

• Declaration of Jagged array

• Let's see an example to declare jagged array that

has two elements.

• int[][] arr = new int[2][];

Initialization of Jagged array

• Let's see an example to initialize jagged array. The size

of elements can be different.

• arr[0] = new int[4];

• arr[1] = new int[6];

• Initialization and filling elements in Jagged array

• Let's see an example to initialize and fill elements in

jagged array.

• arr[0] = new int[4] { 11, 21, 56, 78 };

• arr[1] = new int[6] { 42, 61, 37, 41, 59, 63 };

C# Jagged Array Example

• Let's see a simple example of jagged array in C#

which declares, initializes and traverse jagged arrays.

public class JaggedArrayTest {

public static void Main() {

int[][] arr = new int[2][];// Declare the array

arr[0] = new int[] { 11, 21, 56, 78 };// Initialize the array

arr[1] = new int[] { 42, 61, 37, 41, 59, 63 };

// Traverse array elements

for (int i = 0; i < arr.Length; i++) {

for (int j = 0; j < arr[i].Length; j++) {

System.Console.Write(arr[i][j]+" ");

}

System.Console.WriteLine();

}

}

}

Output:

11 21 56 78

42 61 37 41 59 63

Initialization of Jagged array

upon Declaration
• Let's see an example to initialize the jagged array

while declaration.

int[][] arr = new int[3][]{

new int[] { 11, 21, 56, 78 },

new int[] { 2, 5, 6, 7, 98, 5 },

new int[] { 2, 5 }

};

C# Jagged Array Example 2

• Let's see a simple example of jagged array which

initializes the jagged arrays upon declaration.
public class JaggedArrayTest {

public static void Main() {

int[][] arr = new int[3][]{

new int[] { 11, 21, 56, 78 },

new int[] { 2, 5, 6, 7, 98, 5 },

new int[] { 2, 5 }

};

// Traverse array elements

for (int i = 0; i < arr.Length; i++) {

for (int j = 0; j < arr[i].Length; j++) {

System.Console.Write(arr[i][j]+" ");

}

System.Console.WriteLine();

} } }

Output:

11 21 56 78

2 5 6 7 98 5

2 5

C# Params

• In C#, params is a keyword which is used to specify a

parameter that takes variable number of arguments.

• It is useful when we don't know the number of

arguments prior.

• Only one params keyword is allowed and no

additional parameter is permitted after params

keyword in a function declaration.

C# Params Example 1

using System;

namespace AccessSpecifiers {

class Program {

// User defined function

public void Show(params int[] val) // Params Paramater {

for (int i=0; i<val.Length; i++) {

Console.WriteLine(val[i]);

}

}

// Main function, execution entry point of the program

static void Main(string[] args) {

Program program = new Program(); // Creating Object

program.Show(2,4,6,8,10,12,14); // Passing arguments of variable

length

}

}

}

Output:

2

4

6

8

10

12

14

C# Params Example 2

In this example, we are using object type params that

allow entering any number of inputs of any type.
using System;

namespace AccessSpecifiers {

class Program {

// User defined function

public void Show(params object[] items)

// Params Paramater {

for (int i = 0; i < items.Length; i++) {

Console.WriteLine(items[i]);

}

}

// Main function, execution entry point of the program

static void Main(string[] args) {

Program program = new Program(); // Creating Object

program.Show("Ramakrishnan Ayyer","Ramesh",101, 20.50,"Peter",

'A'); // Passing arguments of variable length } } }

Output:

Ramakrishnan Ayyer

Ramesh

101

20.5

Peter

A

C# Array class

• C# provides an Array class to deal with array related

operations.

• It provides methods for creating, manipulating,

searching, and sorting elements of an array.

• This class works as the base class for all arrays in

the .NET programming environment.

C# Array class Signature

[SerializableAttribute]

[ComVisibleAttribute(true)]

public abstract class Array : ICloneable, IList, ICollection,

IEnumerable, IStructuralComparable, IStructuralEquatable

Note: In C#, Array is not part of collection but considered as collection

because it is based on the IList interface.

C# Array Properties
Property Description

IsFixedSize It is used to get a value indicating whether
the Array has a fixed size or not.

IsReadOnly It is used to check that the Array is read-
only or not.

IsSynchronized It is used to check that access to the Array
is synchronized or not.

Length It is used to get the total number of
elements in all the dimensions of the
Array.

LongLength It is used to get a 64-bit integer that
represents the total number of elements in
all the dimensions of the Array.

Rank It is used to get the rank (number of
dimensions) of the Array.

SyncRoot It is used to get an object that can be used
to synchronize access to the Array.

C# Array Methods
Method Description

AsReadOnly<T>(T[]) It returns a read-only wrapper for the specified
array.

BinarySearch(Array,Int32,Int32,Object) It is used to search a range of elements in a one-
dimensional sorted array for a value.

BinarySearch(Array,Object) It is used to search an entire one-dimensional
sorted array for a specific element.

Clear(Array,Int32,Int32) It is used to set a range of elements in an array to
the default value.

Clone() It is used to create a shallow copy of the Array.

Copy(Array,Array,Int32) It is used to copy elements of an array into
another array by specifying starting index.

CopyTo(Array,Int32) It copies all the elements of the current one-
dimensional array to the specified one-dimensional
array starting at the specified destination array
index

CreateInstance(Type,Int32) It is used to create a one-dimensional Array of the
specified Type and length.

Empty<T>() It is used to return an empty array.

C# Array Methods
Method Description

Finalize() It is used to free resources and perform
cleanup operations.

Find<T>(T[],Predicate<T>) It is used to search for an element that
matches the conditions defined by the
specified predicate.

IndexOf(Array,Object) It is used to search for the specified object
and returns the index of its first occurrence
in a one-dimensional array.

Initialize() It is used to initialize every element of the
value-type Array by calling the default
constructor of the value type.

Reverse(Array) It is used to reverse the sequence of the
elements in the entire one-dimensional
Array.

Sort(Array) It is used to sort the elements in an entire
one-dimensional Array.

ToString() It is used to return a string that represents
the current object.

C# Array Example

using System;

namespace CSharpProgram {

class Program {

static void Main(string[] args) {

// Creating an array

int[] arr = new int[6] { 5, 8, 9, 25, 0, 7 };

// Creating an empty array

int[] arr2 = new int[6];

// Displaying length of array

Console.WriteLine("length of first array: "+arr.Length);

// Sorting array

Array.Sort(arr);

Console.Write("First array elements: ");

// Displaying sorted array

PrintArray(arr);

// Finding index of an array element

C# Array Example

Console.WriteLine("\nIndex position of 25 is "+Array.IndexOf(arr,25));

// Coping first array to empty array

Array.Copy(arr, arr2, arr.Length);

Console.Write("Second array elements: ");

// Displaying second array

PrintArray(arr2);

Array.Reverse(arr);

Console.Write("\nFirst Array elements in reverse order: ");

PrintArray(arr); }

// User defined method for iterating array elements

static void PrintArray(int[] arr)

{

foreach (Object elem in arr)

{

Console.Write(elem+" ");

} } } }

Output:

length of first array: 6

First array elements: 0 5 7 8 9 25

Index position of 25 is 5

Second array elements: 0 5 7 8 9 25

First Array elements in reverse order: 25

9 8 7 5 0

C# Command Line Arguments

• Arguments that are passed by command line known as

command line arguments.

• We can send arguments to the Main method while executing

the code.

• The string args variable contains all the values passed from

the command line.

C# Command Line Arguments

Example
using System;

namespace CSharpProgram{

class Program {

// Main function, execution entr

y point of the program

static void Main(string[] args) //

string type parameters {

// Command line arguments

Console.WriteLine("Argumen

t length: "+args.Length);

Console.WriteLine("Supplied

Arguments are:");

foreach (Object obj in args)

{

Console.WriteLine(obj);

}

}

}

}

Compile: csc Program.cs

Execute: Program.exe Hi there, how

are you?

After executing the code, it

produces the following output to the

console.

Output:

Argument length: 5

Supplied Arguments are:

Hi

there,

how

are

you?

C# String

C# String

• In C#, string is an object of System.String class that

represent sequence of characters.

• We can perform many operations on strings such as

concatenation, comparision, getting substring, search,

trim, replacement etc.

string vs String

• In C#, string is keyword which is an alias for

System.String class. That is why string and String are

equivalent. We are free to use any naming convention.

• string s1 = "hello";//creating string using string

keyword

• String s2 = "welcome";//creating string using String

class

C# String Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "hello";

char[] ch = { 'c', 's', 'h', 'a', 'r', 'p' };

string s2 = new string(ch);

Console.WriteLine(s1);

Console.WriteLine(s2);

}

}

Output:

hello

csharp

C# String methods

Method Name Description

Clone() It is used to return a reference to this instance of
String.

Compare(String, String) It is used to compares two specified String objects. It
returns an integer that indicates their relative position
in the sort order.

CompareOrdinal(String,
String)

It is used to compare two specified String objects by
evaluating the numeric values of the corresponding
Char objects in each string..

CompareTo(String) It is used to compare this instance with a specified
String object. It indicates whether this instance
precedes, follows, or appears in the same position in
the sort order as the specified string.

Concat(String, String) It is used to concatenate two specified instances of
String.

Contains(String) It is used to return a value indicating whether a
specified substring occurs within this string.

Copy(String) It is used to create a new instance of String with the
same value as a specified String.

C# String methods

Method Name Description

CopyTo(Int32, Char[],
Int32, Int32)

It is used to copy a specified number of characters
from a specified position in this instance to a specified
position in an array of Unicode characters.

EndsWith(String) It is used to check that the end of this string instance
matches the specified string.

Equals(String, String) It is used to determine that two specified String
objects have the same value.

Format(String, Object) It is used to replace one or more format items in a
specified string with the string representation of a
specified object.

GetEnumerator() It is used to retrieve an object that can iterate
through the individual characters in this string.

GetHashCode() It returns the hash code for this string.

GetType() It is used to get the Type of the current instance.

GetTypeCode() It is used to return the TypeCode for class String.

C# String methods

Method Name Description

IndexOf(String) It is used to report the zero-based index of the first
occurrence of the specified string in this instance.

Insert(Int32, String) It is used to return a new string in which a specified
string is inserted at a specified index position.

Intern(String) It is used to retrieve the system's reference to the
specified String.

IsInterned(String) It is used to retrieve a reference to a specified
String.

IsNormalized() It is used to indicate that this string is in Unicode
normalization form C.

IsNullOrEmpty(String) It is used to indicate that the specified string
is null or an Empty string.

IsNullOrWhiteSpace(String) It is used to indicate whether a specified string
is null, empty, or consists only of white-space
characters.

Join(String, String[]) It is used to concatenate all the elements of a string
array, using the specified separator between each
element.

C# String methods

Method Name Description

LastIndexOf(Char) It is used to report the zero-based index position of the
last occurrence of a specified character within String.

LastIndexOfAny(Char[]) It is used to report the zero-based index position of the
last occurrence in this instance of one or more characters
specified in a Unicode array.

Normalize() It is used to return a new string whose textual value is the
same as this string, but whose binary representation is in
Unicode normalization form C.

PadLeft(Int32) It is used to return a new string that right-aligns the
characters in this instance by padding them with spaces
on the left.

PadRight(Int32) It is used to return a new string that left-aligns the
characters in this string by padding them with spaces on
the right.

Remove(Int32) It is used to return a new string in which all the characters
in the current instance, beginning at a specified position
and continuing through the last position, have been
deleted.

Replace(String, String) It is used to return a new string in which all occurrences
of a specified string in the current instance are replaced
with another specified string.

C# String methods

Method Name Description

Split(Char[]) It is used to split a string into substrings that
are based on the characters in an array.

StartsWith(String) It is used to check whether the beginning of
this string instance matches the specified
string.

Substring(Int32) It is used to retrieve a substring from this
instance. The substring starts at a specified
character position and continues to the end of
the string.

ToCharArray() It is used to copy the characters in this
instance to a Unicode character array.

ToLower() It is used to convert String into lowercase.

ToLowerInvariant() It is used to return convert String into
lowercase using the casing rules of the
invariant culture.

C# String methods

Method Name Description

ToString() It is used to return instance of String.

ToUpper() It is used to convert String into uppercase.

Trim() It is used to remove all leading and trailing white-
space characters from the current String object.

TrimEnd(Char[]) It Is used to remove all trailing occurrences of a set
of characters specified in an array from the current
String object.

TrimStart(Char[]) It is used to remove all leading occurrences of a set
of characters specified in an array from the current
String object.

C# String Clone()

• The C# Clone() method is used to clone a string

object. It returns another copy of same data. The return

type of Clone() method is object.

• Signature

• public object Clone()

• Parameters

• It does not take any parameter.

• Returns

• It returns a reference.

C# String Clone()

• The C# Clone() method is used to clone a string

object. It returns another copy of same data. The return

type of Clone() method is object.

• Signature

• public object Clone()

• Parameters

• It does not take any parameter.

• Returns

• It returns a reference.

C# String Clone () method

example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello ";

string s2 = (String)s1.Clone();

Console.WriteLine(s1);

Console.WriteLine(s2);

}

}

Output:

Hello

Hello

C# String Compare()

• The C# Compare() method is used to compare first

string with second string lexicographically. It returns

an integer value.

• If both strings are equal, it returns 0. If first string is

greater than second string, it returns 1 else it returns -1

• Rule

• s1==s2 returns 0

• s1>s2 returns 1

• s1<s2 returns -1

C# String Compare()

• Signatures

• public static int Compare(String first, String second)

• public static int Compare(String, Int32, String, Int32, Int32)

• public static int Compare(String, Int32, Int32, String, Int32, Boolean)

• public static int Compare(String, Boolean, Int32, Int32, String, Int32,

CultureInfo)

• public static int Compare(String, CultureInfo, Int32, Int32, String, Int32,

CompareOptions)

• public static int Compare(String, Int32, Int32, String, Int32, StringComparison)

• public static int Compare(String, String, Boolean)

• public static int Compare(String, String, Boolean, CultureInfo)

• public static int Compare(String, String, CultureInfo, CompareOptions)

• public static int Compare(String, String, StringComparison)

C# String Compare()

• Parameters

• first: first argument represents string which is to be

compared with second string.

• second: second argument represents string which is to be

compared with first string.

• Return

• It returns an integer value.

C# String Compare() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "hello";

string s2 = "hello";

string s3 = "csharp";

string s4 = "mello";

Console.WriteLine(string.Compare(s1,s2));

Console.WriteLine(string.Compare(s2,s3));

Console.WriteLine(string.Compare(s3,s4));

}

}

Output:

0

1

-1

C# String CompareOrdinal()

• The C# CompareOrdinal() method compares two

specified String objects by evaluating the numeric

values of the corresponding Char objects in each

string.

• If both strings are equal, it returns 0. If first string is

greater than second string, it returns positive number

in difference else it returns negative number.

C# String CompareOrdinal()

• Rule

• s1==s2 returns 0

• s1>s2 returns positive number in difference

• s1<s2 returns negative number in difference

• Signature

• public static int CompareOrdinal(String first, String

second)

• public static int CompareOrdinal(String, Int32,

String, Int32, Int32)

C# String CompareOrdinal()

• Parameters

• first: first argument represents string which is to be

compared with second string.

• second: second argument represents string which is

to be compared with first string.

• Return

• It returns an integer value.

C# String CompareOrdinal()

Method Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "hello";

string s2 = "hello";
string s3 = "csharp";

string s4 = "mello";

Console.WriteLine(string.CompareOrdinal(s1,s2));

Console.WriteLine(string.CompareOrdinal(s1,s3));

Console.WriteLine(string.CompareOrdinal(s1,s4));
}

}

Output:

0

5

-5

C# String CompareTo()

• The C# CompareTo() method is used to compare

String instance with a specified String object.

• It indicates whether this String instance precedes,

follows, or appears in the same position in the sort

order as the specified string or not.

C# String CompareTo()

• Signature

• public int CompareTo(String str)

• public int CompareTo(Object)

• Parameters

• str: it is a string argument which is used to

compare.

• Return

• It returns an integer value.

C# String CompareTo() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "hello";

string s2 = "hello";

string s3 = "csharp";

Console.WriteLine(s1.CompareTo(s2));

Console.WriteLine(s2.CompareTo(s3));

}

}

Output:

0

1

C# String Concat()

• The C# Concat() method is used to concatenate multiple string objects. It returns

concatenated string. There are many overloaded methods of Concat().

• Signature

• public static string Concat(String, String)

• public static string Concat(IEnumerable<String>)

• public static string Concat(Object)

• public static string Concat(Object, Object)

• public static string Concat(Object, Object, Object)

• public static string Concat(Object, Object, Object, Object)

• public static string Concat(params Object[])

• public static string Concat(String, String, String)

• public static string Concat(String, String, String,?String)

• public static string Concat(params String[])

• [ComVisibleAttribute(false)]

• public static string Concat<T>(IEnumerable<T>)

C# String Concat()

• Parameters

• It takes two String object arguments.

• Return

• It returns a string object.

C# String Concat() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello ";

string s2 = "C#";

Console.WriteLine(string.Concat(s1,s2));

}

}

Output:

Hello C#

C# String Contains()

• The C# Contains() method is used to return a value

indicating whether the specified substring occurs

within this string or not. If the specified substring is

found in this string, it returns true otherwise false.

• Signature

• public bool Contains(String str)

C# String Contains()

• Parameters

• str: it is a string object which is used to check

occurrence in the calling string.

• Return

• It returns boolean value either true or false.

C# String Contains() method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello ";

string s2 = "He";

string s3 = "Hi";

Console.WriteLine(s1.Contains(s2));

Console.WriteLine(s1.Contains(s3));

}

}

Output:

True

False

C# String Copy()

• The C# Copy() method is used to create a new

instance of String with the same value as a specified

String. It is a static method of String class. Its return

type is string.

• Signature

• public static string Copy(String str)

• Parameter

• str: it takes a string argument which is used to

create a copy of specified string.

• Return

• It returns string object.

C# String Copy() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello ";

string s2 = string.Copy(s1);

Console.WriteLine(s1);

Console.WriteLine(s2);

}

}

Output:

Hello

Hello

C# String CopyTo()

• The C# CopyTo() method is used to copy a specified

number of characters from the specified position in the

string. It copies the characters of this string into a char

array.

• Signature

• public void CopyTo(int index, char[] ch, int start,

int end)

C# String CopyTo()

• Parameter

• index: it is an integer type parameter. It is an index

of string.

• ch: it is a char type array.

• start: it is start index of char type array.

• end: it is end index of char type array.

C# String CopyTo() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#, How Are You?";

char[] ch = new char[15];

s1.CopyTo(10,ch,0,12);

Console.WriteLine(ch);

}

}

Output:

How Are You?

C# String EndsWith()

• The C# EndsWith() method is used to check whether

the specified string matches the end of this string or

not. If the specified string is found at the end of this

string, it returns true otherwise false.

• Signature

• public bool EndsWith(String str)

• public bool EndsWith(String, Boolean,

CultureInfo)

• public bool EndsWith (String, StringComparison)?

C# String EndsWith()

• Parameters

• str: it is a string object which is used to check the

whether a specified string ends with it.

• Return

• It returns boolean value either true or false.

C# String EndsWith() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello";

string s2 = "llo";

string s3 = "C#";

Console.WriteLine(s1.EndsWith(s2));

Console.WriteLine(s1.EndsWith(s3));

}

}

Output:

True

False

C# String Equals()

• The C# Equals() method is used to check whether two

specified String objects have the same value or not. If

both strings have same value, it return true otherwise

false.

• In other words, it is used to compare two strings on the

basis of content.

C# String Equals()
• Signature

• public bool Equals(String str)

• public static bool Equals(String, String)

• public override bool Equals(Object)

• public static bool Equals(String, String,

StringComparison)

• public bool Equals(String, StringComparison)

• Parameter

• str: it is a string object.

• Return

• It returns boolean value either true or false

C# String Equals() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello";

string s2 = "Hello";

string s3 = "Bye";

Console.WriteLine(s1.Equals(s2));

Console.WriteLine(s1.Equals(s3));

Console.WriteLine(string.Equals(s1, s2));

}

}

Output:

True

False

True

C# String Format()

• The C# Format() method is used to replace one or

more format items in the specified string with the

string representation of a specified object.

• Signature

• public static string Format (String first, Object second)

• public static string Format(IFormatProvider, String, Object)

• public static string Format(IFormatProvider, String, Object, Object)

• public static string Format(IFormatProvider, String, Object, Object,

Object)

• public static string Format(IFormatProvider, String, Object[])

• public static string Format(String, Object, Object)

• public static string Format(String, Object, Object, Object)

• public static string Format(String, params Object[])

C# String Equals()

• Parameters

• first : it is a string type argument.

• second: it is object type argument.

• Return

• It returns a formatted string.

C# String Format() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = string.Format("{0:D}", DateTime.Now);

Console.WriteLine(s1);

}

}

Output:

Saturday, December 17, 2016

C# String GetEnumerator()

• The C# GetEnumerator() method is used to convert

string object into char enumerator. It returns instance

of CharEnumerator. So, you can iterate string through

loop.

• Signature

• public CharEnumerator GetEnumerator()

• Parameter

• It does not take any argument.

• Return

• It returns System.CharEnumerator.

C# String GetEnumerator()

Method Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s2 = "Hello C#";

CharEnumerator ch = s2.GetEnumerator();

while(ch.MoveNext()){

Console.WriteLine(ch.Current);

}

}

}

Output:

H

e

l

l

o

C

#

C# String GetHashCode()

• The C# GetHashCode() method is used to get hash

code of this string. It returns an integer value.

• Signature

• public override int GetHashCode()

• Parameters

• It does not take any parameter (argument).

• Return

• It returns hash code of a string object.

C# String GetHashCode()

Method Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

Console.WriteLine(s1.GetHashCode());

}

}

Output:

718576468

C# String GetType()

• The C# GetType() method is used to get type of

current object. It returns the instance of Type class

which is used for reflection.

• Signature

• public Type GetType()

• Parameters

• It does not take any parameter.

• Return

• It returns object of Type class.

C# String GetType() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

Console.WriteLine(s1.GetType());

}

}

Output:

System.String

C# String GetTypeCode()

• The C# GetTypeCode() method is used to get type

code of string. It returns the instance of TypeCode

which is used to specify the type of an object.

• Signature

• public TypeCode GetTypeCode()

• Parameters

• It does not take any parameter.

• Return

• It returns type code of string class.

C# String GetTypeCode()

Method Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

Console.WriteLine(s1.GetTypeCode());

}

}

Output:

String

C# String IndexOf()

• The C# IndexOf() is used to get index of the specified

character present in the string. It returns index as an

integer value.

• Signature

• public int IndexOf(Char ch)

• public int IndexOf(Char, Int32)

• public int IndexOf(Char, Int32, Int32)

• public int IndexOf(String)

• public int IndexOf(String, Int32)

• public int IndexOf(String, Int32, Int32)

• public int IndexOf(String, Int32, Int32, StringComparision)

• public int IndexOf(String, Int32, StringComparision)

• public int IndexOf(String, StringComparision)

C# String IndexOf()

• Parameters

• ch: it is a character type parameter.

• Return

• It returns an integer value.

C# String IndexOf() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

int index = s1.IndexOf('e');

Console.WriteLine(index);

}

}

Output:

1

C# String Insert()

• The C# Insert() method is used to insert the specified

string at specified index number. The index number

starts from 0. After inserting the specified string, it

returns a new modified string.

• Signature

• public string Insert(Int32 first, String second)

C# String Insert()

• Parameters

• first: It is used to pass as an index.

• second: It is used to insert the given string at

specified index.

• Return

• It returns a new modified string.

C# String Insert() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = s1.Insert(5,"-");

Console.WriteLine(s2);

}

}

Output:

Hello- C#

C# String Intern(String str)

• The C# Intern() method is used to retrieve reference to

the specified String. It goes to intern pool (memory

area) to search for a string equal to the specified

String. If such a string exists, its reference in the intern

pool is returned. If the string does not exist, a

reference to specified String is added to the intern

pool, then that reference is returned.

• Signature

• The signature of intern method is given below:

• public static string Intern(String str)

• Parameters

• str: it is a parameter of type string.

C# String Intern() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = string.Intern(s1);

Console.WriteLine(s1);

Console.WriteLine(s2);

}

}

Output:

Hello C#

Hello C#

C# String IsInterned()

• The C# IsInterned() method is used to get reference of

the specified string.

• The difference between Intern() and IsInterned() is

that Intern() method interns the string if it is not

interned but IsInterned() doesn't do so. In such case,

IsInterned() method returns null.

• Signature

• public static string IsInterned(String str)

C# String IsInterned()

• Parameter

• str: it is a string type parameter.

• Return

• It returns a reference.

C# String IsInterned() Method

Example

using System;

public class StringExample

{
public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = string.Intern(s1);

string s3 = string.IsInterned(s1);
Console.WriteLine(s1);

Console.WriteLine(s2);

Console.WriteLine(s3);

}

}

Output:

Hello C#

Hello C#

Hello C#

C# String Intern() vs IsInterned()

Example

using System;

public class StringExample

{
public static void Main(string[] args)

{

string a = new string(new[] {'a'});

string b = new string(new[] {'b'});

string.Intern(a); // Interns it
Console.WriteLine(string.IsInterned(a) != null);//True

string.IsInterned(b); // Doesn't intern it

Console.WriteLine(string.IsInterned(b) != null);//False

}

}

Output:

True

False

C# String IsNormalized()

• The C# IsNormalized() method is used to check

whether the string is in Unicode normalization form. It

returns boolean value.

• Signature

• public bool IsNormalized()

• public bool IsNormalized(NormalizationForm)

C# String IsNormalized()

• Parameter

• It does not take any parameter.

• Return

• It returns boolean.

C# String IsNormalized() Method

Example

using System;

using System.Text;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

bool b1 = s1.IsNormalized();

Console.WriteLine(s1);

Console.WriteLine(b1);

}

}

Output:

Hello C#

True

C# String Normalize()

• The C# Normalize() method is used to get a new string

whose textual value is same as this string, but whose

binary representation is in Unicode normalization

form.

• Signature

• public string Normalize()

• public string Normalize(NormalizationForm)

C# String Normalize()

• Parameter

• First method does not take any parameter but

second method takes a parameter of Normalization

type.

• Return

• It returns normalized string.

C# String Normalize() Method

Example.

using System;

using System.Text;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = s1.Normalize();

Console.WriteLine(s2);

}

}

Output:

Hello C#

C# String IsNullOrEmpty()

• The C# IsNullOrEmpty() method is used to check

whether the specified string is null or an Empty string.

It returns a boolean value either true or false.

• Signature

• public static bool IsNullOrEmpty(String str)

C# String IsNullOrEmpty()

• Parameter

• str: it is a string parameter which is used to check

string.

• Return

• It returns boolean value.

C# String IsNullOrEmpty() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)
{

string s1 = "Hello C#";

string s2 = "";

bool b1 = string.IsNullOrEmpty(s1);

bool b2 = string.IsNullOrEmpty(s2);
Console.WriteLine(b1);

Console.WriteLine(b2);

}

}

Output:

False

True

C# String IsNullOrWhiteSpace()

• The C# IsNullOrWhiteSpace() method is used to

check whether the specified string is null, or consists

only of white-space characters. It returns boolean

value either True or False.

• Signature

• public static bool IsNullOrWhiteSpace(String str)

C# String IsNullOrWhiteSpace()

• Parameter

• str: it is a string parameter which is used to check

null, white-space in string.

• Return

• It returns boolean value.

C# String IsNullOrWhiteSpace()

Method Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = "";

string s3 = " ";

bool b1 = string.IsNullOrWhiteSpace(s1);

bool b2 = string.IsNullOrWhiteSpace(s2);

bool b3 = string.IsNullOrWhiteSpace(s3);

Console.WriteLine(b1); // returns False

Console.WriteLine(b2); // returns True

Console.WriteLine(b3); // returns True

}

}

Output:

False

True

True

C# String Join()

• The C# Join() methods is used to concatenate the

elements of an array, using the specified separator

between each element. It returns a modified string.

• Signature
• [ComVisibleAttribute(false)]

• public static string Join(String first, params String[] second)

• [ComVisibleAttribute(false)]

• public static string Joint(String, params Object[])

• [ComVisibleAttribute(false)]

• public static string Join (String, IEnumerable<String>)

• [ComVisibleAttribute(false)]

• public static string Join(String, String[], Int32, Int32)

• [ComVisibleAttribute(false)]

• public static string Join<T>(String, IEnumerable <T>)

C# String Join()

• Parameter

• first: it is a string type parameter.

• second: it is a string array.

• Return

• It returns a string.

C# String Join() Method Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string[] s1 = {"Hello","C#","by",“World"};

string s3 = string.Join("-",s1);

Console.WriteLine(s3);

}

}

Output:

Hello-C#-by-World

C# String LastIndexOf()

• The C# LastIndexOf() method is used to find index

position of the last occurrence of a specified character

within String.

• Signature

• public int LastIndexOf(Char ch)

• public int LastIndexOf(Char, Int32)

• public int LastIndexOf(Char, Int32, Int32)

• public int LastIndexOf(String)

• public int LastIndexOf(String, Int32)

• public int LastIndexOf(String, Int32, Int32)

• public int LastIndexOf(String, Int32, Int32, StringComparison)

• public int LastIndexOf(String, Int32, StringComparison)

• public int LastIndexOf(String, StringComparison)

C# String LastIndexOf()

• Parameter

• ch: it is a character type parameter which is used to

find last occurrence of given character within string.

• Return

• It returns integer value.

C# String LastIndexOf() Method

Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

int index = s1.LastIndexOf('l');

Console.WriteLine(index);

}

}

Output:

3

C# String IndexOf() vs

LastIndexOf() Example
The IndexOf() method returns the index number of the first

matched character whereas the LastIndexOf() method returns

index number of the last matched character.

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

int first = s1.IndexOf('l');

int last = s1.LastIndexOf('l');

Console.WriteLine(first);

Console.WriteLine(last);

}

}

Output:

2

3

C# String LastIndexOfAny()

• The C# LastIndexOfAny() method is used to find

index position of the last occurrence of one or more

characters specified in this string.

• Signature

• public int LastIndexOfAny(Char[] ch)

• public int LastIndexOfAny(Char[], Int32)

• public int LastIndexOfAny(Char[], Int32, Int32)

C# String LastIndexOfAny()

• Parameter

• ch: it is a character type array.

• Return

• It returns integer value.

C# String LastIndexOfAny()

Method Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "abracadabra";

char[] ch = {'r','b'};

int index = s1.LastIndexOfAny(ch);//Finds 'r' at the last

Console.WriteLine(index);

}

}

Output:

9

C# String LastIndexOfAny()

Method Example 2
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "abracadabra";

char[] ch = {'t','b'};

int index = s1.LastIndexOfAny(ch);//Finds 'b' at the last

Console.WriteLine(index);

}

}

Output:

8

C# String PadLeft()

• The C# PadLeft() method is used to get a new string

that right-aligns the characters in this string if the

string length is less than the specified length.

• For example, suppose you have "hello C#" as the

string which has 8 length of characters and you are

passing 10 for the padleft, it shifts the string at right

side after two whitespaces. It means PadLeft() method

provides padding to the string for the specified length.

It is used for formatting string content.

C# String PadLeft()

• Signature

• public string PadLeft(Int32 length)

• public string PadLeft(Int32, Char)

• Parameter

• length: it is an integer type parameter which is used

to pass padding.

• Return

• It returns string.

C# String PadLeft() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";// 8 length of characters

string s2 = s1.PadLeft(10);

//(10-8=2) adds 2 whitespaces at the left side

Console.WriteLine(s2);

}

}

Output:

_ _Hello C#

C# String PadRight()

• The C# PadRight() method is used to get a new string

that left-aligns the characters in this string by padding

them with spaces on the right, for a specified total

length.

• Signature

• public string PadRight(Int32 length)

• public string PadRight(Int32, Char)

C# String PadRight()

• Parameter

• length: it is an integer type parameter.

• Return

• It returns a string.

C# String PadRight() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";// 8 length of characters

string s2 = s1.PadRight(15);

Console.Write(s2);//padding at right side (15-8=7)

Console.Write(“World");//will be written after 7 white spaces

}
}

Output:

Hello C# World

C# String Remove()

• The C# Remove() method is used to get a new string

after removing all the characters from specified

beginIndex till given length. If length is not specified,

it removes all the characters after beginIndex.

• Signature

• public string Remove(Int32 beginIndex)

• public string Remove(Int32 beginIndex, Int32

length)

C# String Remove()

• Parameter

• index: it is an integer type parameter.

• Return

• It returns a string.

C# String Remove() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = s1.Remove(2);

string s3 = s1.Remove(2,2);

Console.WriteLine(s2);

Console.WriteLine(s3);

}

}

Output:

He

Heo C#

C# String Remove() Method

Example 2
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "abcdefghijk";

string s2 = s1.Remove(4, 5);

Console.WriteLine(s2);

}

}

Output:

abcdjk

C# String Replace()

• The C# Replace() method is used to get a new

string in which all occurrences of a specified

Unicode character in this string are replaced

with another specified Unicode character.

• There are two methods of Replace() method.

You can replace string also.

C# String Replace()

• Signature

• public string Replace(Char first, Char second)

• public string Replace(String firstString, String

secondString)

• Parameter

• first: it is a first parameter of char type.

• second: it is a second parameter of char type.

• Return

• It returns a string.

C# String Replace() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello F#";

string s2 = s1.Replace('F','C');

Console.WriteLine(s2);

}

}

Output:

Hello C#

C# String Replace() Method

Example 2
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#, Hello .Net, Hello Class";

string s2 = s1.Replace("Hello","Cheers");

Console.WriteLine(s2);

}

}

Output:

Cheers C#, Cheers .Net, Cheers Class

C# String Split()

• The C# Split() method is used to split a string into

substrings on the basis of characters in an array. It

returns string array.

• Signature

• public string[] Split(params Char[] ch)

• public string[] Split(Char[], Int32)

• [ComVisibleAttribute(false)]

• public string[] Split(Char[], Int32, StringSplitOptions)

• [ComVisibleAttribute(false)]

• public string[] Split(Char[], StringSplitOptions)

• [ComVisibleAttribute(false)]

• public string[] Split(String[], Int32, StringSplitOptions)

• public string[] Split(String[], StringSplitOptions)

C# String Split()

• Parameter

• ch: it is a character type array.

• Return

• It returns array of string

C# String Split() Method Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C Sharp";

string[] s2 = s1.Split(' ');

foreach (string s3 in s2)

{

Console.WriteLine(s3);

}

}

}

Output:

Hello

C

Sharp

C# String StartsWith()

• The C# StartsWith() method is used to check whether

the beginning of this string instance matches the

specified string.

• Signature

• public bool StartsWith(String str)

• public bool StartsWith(String, Boolean,

CultureInfo)

• public bool StartsWith(String, StringComparison)

C# String StartsWith()

• Parameter

• str: it is string type parameter which is used to check

beginning of string.

• Return

• It returns boolean value.

C# String StartsWith() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C Sharp";

bool b1 = s1.StartsWith("h");

bool b2 = s1.StartsWith("H");

Console.WriteLine(b1);

Console.WriteLine(b2);

}

}

Output:

False

True

C# String SubString()

• The C# SubString() method is used to get a substring

from a String. The substring starts at a specified

character position and continues to the end of the

string.

• Signature

• public string Substring(Int32 index)

• public string Substring(Int32, Int32)

C# String SubString()

• Parameter

• index: it is an integer type parameter which is used

to pass index to get a substring.

• Return

• It returns a string.

C# String SubString() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C Sharp";

string s2 = s1.Substring(5);

Console.WriteLine(s2);

}

}

Output:

C Sharp

C# String ToCharArray()

• The C# ToCharArray() method is used to get character

array from a string object.

• Signature

• public char[] ToCharArray()

• public char[] ToCharArray(Int32, Int32)

C# String ToCharArray()

• Parameter

• First method does not take any parameter while

second method takes two integer parameters.

• Return

• It returns a character array.

C# String ToCharArray() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

char[] ch = s1.ToCharArray();

foreach(char c in ch){

Console.WriteLine(c);

}

}

}

Output:

H

e

l

l

o

C

#

C# String ToLower()

• The C# ToLower() method is used to convert a string

into lowercase. It returns a string in lower case.

• Signature

• public string ToLower()

• public string ToLower(CultureInfo)

C# String ToLower()

• Parameter

• First method does not take any parameter.

• Return

• It returns a string.

C# String ToLower() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = s1.ToLower();

Console.WriteLine(s2);

}

}

Output:

hello c#

C# String ToLowerInvariant()

• The C# ToLowerInvariant() method is used to

converted a string into lowercase using the casing

rules of the invariant culture.

• Signature

• public string ToLowerInvariant()

C# String ToLowerInvariant()

• Parameter

• It does not take any parameter.

• Return

• It returns a string.

C# String ToLowerInvariant()

Method Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = s1.ToLowerInvariant();

Console.WriteLine(s2);

}

}

Output:

hello c#

C# String ToString()

• The C# ToString() method is used to get instance of

String.

• Signature

• public override string ToString()

• public string ToString(IFormatProvider)

C# String ToLowerInvariant()

• Parameter

• It does not any parameter.

• Return

• It returns a string object.

C# String ToString() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

int a = 123;

string s2 = s1.ToString();

string s3 = a.ToString();

Console.WriteLine(s2);

Console.WriteLine(s3);

}

}

Output:

Hello C#

123

C# String ToUpper()

• The C# ToUpper() method is used to convert string

into uppercase. It returns a string.

• Signature

• public string ToUpper()

• public string ToUpper(CultureInfo)

C# String ToLowerInvariant()

• Parameter

• First method does not take any parameter.

• Return

• It returns a string

C# String ToUpper() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s3 = s1.ToUpper();

Console.WriteLine(s3);

}

}

Output:

HELLO C#

C# String ToUpperInvariant()

• The C# ToUpperInvariant() method is used to convert

string into uppercase string using the casing rules of

the invariant culture.

• Signature

• public string ToUpperInvariant()

C# String ToUpperInvariant()

• Parameter

• It does not take any parameter

• Return

• It returns a string.

C# String ToUpperInvariant()

Method Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s3 = s1.ToUpperInvariant();

Console.WriteLine(s3);

}

}

Output:

HELLO C#

C# String Trim()

• The C# Trim() method is used to remove all leading

and trailing white-space characters from the current

String object.

• Signature

• public string Trim()

• public string Trim(params Char[])

C# String Trim()

• Parameter

• First method does not take any parameter. Second

method takes a char array as parameter.

• Return

• It returns a string.

C# String Trim() Method Example

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

string s2 = s1.Trim();

Console.WriteLine(s2);

}

}

Output:

Hello C#

C# String TrimEnd()

• The C# TrimEnd() method is used to remove all

trailing occurrences of a set of characters specified in

an array from the current String object.

• Signature

• public string TrimEnd(params Char[] ch)

C# String TrimEnd()

• Parameter

• ch: It takes a char array as parameter.

• Return

• It returns a string.

C# String TrimEnd() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

char[] ch = {'#'};

string s2 = s1.TrimEnd(ch);

Console.WriteLine(s2);

}

}

Output:

Hello C

C# String TrimStart()

• The C# TrimStart() method id used to remove all

leading occurrences of a set of characters specified in

an array from the current String object.

• Signature

• public string TrimStart(params Char[] ch)

C# String TrimStart()

• Parameter

• ch: it is a char array type parameter.

• Return

• It returns a string

C# String TrimStart() Method

Example
using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "Hello C#";

char[] ch = {'H'};

string s2 = s1.TrimStart(ch);

Console.WriteLine(s2);

}

}

Output:

ello C#

C# Object and Class

Outline

• C# Object and Class

• C# Constructor

• C# Destructor

• C# this

• C# static

• C# static class

• C# static constructor

• C# Structs

• C# Enum

C# Object and Class

• Since C# is an object-oriented language, program is

designed using objects and classes in C#.

• C# Object

• In C#, Object is a real world entity, for example,

chair, car, pen, mobile, laptop etc.

• In other words, object is an entity that has state and

behavior. Here, state means data and behavior

means functionality.

C# Object and Class (Contd.)

• Object is a runtime entity, it is created at runtime.

• Object is an instance of a class. All the members of the

class can be accessed through object.

• Let's see an example to create object using new

keyword.

• Student s1 = new Student();//creating an object of

Student

• In this example, Student is the type and s1 is the

reference variable that refers to the instance of Student

class. The new keyword allocates memory at runtime.

C# Object and Class (Contd.)

• C# Class

• In C#, class is a group of similar objects. It is a

template from which objects are created. It can

have fields, methods, constructors etc.

• Let's see an example of C# class that has two fields

only.

public class Student {

int id;//field or data member

String name;//field or data member

}

C# Object and Class Example

• Let's see an example of class that has two fields: id

and name. It creates instance of the class, initializes

the object and prints the object value.

using System;

public class Student {

int id;//data member (also instance variable)

String name;//data member(also instance variable)

public static void Main(string[] args) {

Student s1 = new Student();//creating an object of Student

s1.id = 101;

s1.name = "Anders Hejlsberg";

Console.WriteLine(s1.id);

Console.WriteLine(s1.name);

}
}

Output:

101

Anders Hejlsberg

Output:

101 Sonoo Jaiswal

C# Class Example 2: Having

Main() in another class
• Let's see another example of class where we are

having Main() method in another class. In such case,

class must be public.
using System;

public class Student {

public int id;

public String name;

}

class TestStudent{

public static void Main(string[] args) {

Student s1 = new Student();

s1.id = 101;

s1.name = "Anders Hejlsberg";

Console.WriteLine(s1.id);

Console.WriteLine(s1.name);

}

}

Output:

101

Anders Hejlsberg

C# Class Example 3: Initialize and

Display data through method
• Let's see another example of C# class where we are

initializing and displaying object through method.

using System;

public class Student {

public int id;

public String name;

public void insert(int i, String n) {

id = i;

name = n;

}

public void display() {

Console.WriteLine(id + " " + name);

}

}

class TestStudent{

public static void Main(string[] args)

{

Student s1 = new Student();

Student s2 = new Student();

s1.insert(101, "Ajeet");

s2.insert(102, "Tom");

s1.display();

s2.display();

}

} Output:

101 Ajeet

102 Tom

C# Class Example 4: Store and

Display Employee Information
using System;

public class Employee

{

public int id;

public String name;

public float salary;

public void insert(int i, String n,

float s) {

id = i;

name = n;

salary = s;

}

public void display() {

Console.WriteLine(id + " " +

name+" "+salary);

}

}

class TestEmployee{

public static void Main(string[] args)

{

Employee e1 = new Employee();

Employee e2 = new Employee();

e1.insert(101, “Ram",890000f);

e2.insert(102, “Shyam", 490000f);

e1.display();

e2.display();

}

}

Output:

101 Ram 890000

102 Shyam 490000

C# Constructor

• In C#, constructor is a special method which is

invoked automatically at the time of object creation. It

is used to initialize the data members of new object

generally. The constructor in C# has the same name as

class or struct.

• There can be two types of constructors in C#.

• Default constructor

• Parameterized constructor

C# Default Constructor Example:

Having Main() within class

using System;

public class Employee

{

public Employee()

{

Console.WriteLine("Default Constructor Invoked");

}

public static void Main(string[] args)

{

Employee e1 = new Employee();

Employee e2 = new Employee();

}

} Output:

Default Constructor Invoked

Default Constructor Invoked

C# Default Constructor Example:

Having Main() in another class
• Let's see another example of default constructor where

we are having Main() method in another class.
using System;

public class Employee

{

public Employee()

{

Console.WriteLine("Default Constructor Invoked");

}

}

class TestEmployee{

public static void Main(string[] args)

{

Employee e1 = new Employee();

Employee e2 = new Employee();

}

}

Output:

Default Constructor Invoked

Default Constructor Invoked

C# Parameterized Constructor

• A constructor which has parameters is called

parameterized constructor. It is used to provide

different values to distinct objects.
using System;

public class Employee {

public int id;

public String name;

public float salary;

public Employee(int i,

String n,float s) {

id = i;

name = n;

salary = s; }

public void display() {

Console.WriteLine(id + " " +

name+" "+salary);

} }

class TestEmployee{

public static void Main(string[] args

)

{

Employee e1 = new Employee(1

01, “Ram", 890000f);

Employee e2 = new Employee(1

02, “Shyam", 490000f);

e1.display();

e2.display();

}

}

Output:

101 Ram 890000

102 Shyam 490000

C# Destructor

• A destructor works opposite to constructor, It destructs

the objects of classes. It can be defined only once in a

class. Like constructors, it is invoked automatically.

Note:

• C# destructor cannot have parameters. Moreover, modifiers can't be

applied on destructors.

• Destructor can't be public. We can't apply any modifier on destructors.

C# Constructor and Destructor

Example
• Let's see an example of constructor and destructor in

C# which is called automatically.
using System;

public class Employee {

public Employee() {

Console.WriteLine("Constructor Invoked");

}

~Employee() {

Console.WriteLine("Destructor Invoked");

}

}

class TestEmployee{

public static void Main(string[] args) {

Employee e1 = new Employee();

Employee e2 = new Employee();

}

}

Output:

Constructor Invoked

Constructor Invoked

Destructor Invoked

Destructor Invoked

C# this

• In c# programming, this is a keyword that refers to the

current instance of the class.

• here can be 3 main usage of this keyword in C#.

• It can be used to refer current class instance

variable. It is used if field names (instance

variables) and parameter names are same, that is

why both can be distinguish easily.

• It can be used to pass current object as a parameter

to another method.

• It can be used to declare indexers.

C# this example
using System;

public class Employee {

public int id;

public String name;

public float salary;

public Employee(int id, String name,float salary) {

this.id = id;

this.name = name;

this.salary = salary; }

public void display() {

Console.WriteLine(id + " " + name+" "+salary);

} }

class TestEmployee{

public static void Main(string[] args) {

Employee e1 = new Employee(101, “Ram", 890000f);

Employee e2 = new Employee(102, “Shyam", 490000f);

e1.display();

e2.display();

} }

Output:

101 Ram 890000

102 Shyam 490000

C# static

• In C#, static is a keyword or modifier that belongs to

the type not instance. So instance is not required to

access the static members. In C#, static can be field,

method, constructor, class, properties, operator and

event.

• Note: Indexers and destructors cannot be static.

• Advantage of C# static keyword

• Memory efficient: Now we don't need to create

instance for accessing the static members, so it

saves memory. Moreover, it belongs to the type, so

it will not get memory each time when instance is

created

C# Static Field

• A field which is declared as static, is called static

field. Unlike instance field which gets memory each

time whenever you create object, there is only one

copy of static field created in the memory. It is shared

to all the objects.

• It is used to refer the common property of all objects

such as rateOfInterest in case of Account,

companyName in case of Employee etc.

C# static field example
using System;

public class Account {

public int accno;

public String name;

public static float rateOfInterest=8.8f;

public Account(int accno, String name) {

this.accno = accno;

this.name = name;

}

public void display() {

Console.WriteLine(accno + " " + name + " " + rateOfInterest);

} }

class TestAccount{

public static void Main(string[] args) {

Account a1 = new Account(101, “Ram");

Account a2 = new Account(102, “Shyam");

a1.display();

a2.display();

} }

Output:

101 Ram 8.8

102 Shyam 8.8

C# static field example 2:

changing static field
using System;

public class Account {

public int accno;

public String name;

public static float rateOfInterest=8.8f;

public Account(int accno, String name) {

this.accno = accno;

this.name = name; }

public void display() {

Console.WriteLine(accno + " " + name + " " + rateOfInterest);

} }

class TestAccount{

public static void Main(string[] args) {

Account.rateOfInterest = 10.5f;//changing value

Account a1 = new Account(101, “Ram");

Account a2 = new Account(102, “Shyam");

a1.display();

a2.display(); } }

Output:

101 Ram 10.5

102 Shyam 10.5

C# static field example 3:

Counting Objects
using System;

public class Account {

public int accno;

public String name;

public static int count=0;

public Account(int accno, String name) {

this.accno = accno;

this.name = name;

count++; }

public void display() {

Console.WriteLine(accno + " " + name); } }

class TestAccount{

public static void Main(string[] args) {

Account a1 = new Account(101, “Ram");

Account a2 = new Account(102, “Shyam");

Account a3 = new Account(103, “Rohan");

a1.display(); a2.display(); a3.display();

Console.WriteLine("Total Objects are: "+Account.count);

} }

Output:

101 Ram

102 Shyam

103 Rohan

Total Objects are: 3

C# static class

• The C# static class is like the normal class but it

cannot be instantiated. It can have only static

members. The advantage of static class is that it

provides you guarantee that instance of static class

cannot be created.

• Points to remember for C# static class

• C# static class contains only static members.

• C# static class cannot be instantiated.

• C# static class is sealed.

• C# static class cannot contain instance

constructors.

C# static class example
using System;

public static class MyMath
{

public static float PI=3.14f;

public static int cube(int n){return n*n*n;}

}

class TestMyMath{

public static void Main(string[] args)

{

Console.WriteLine("Value of PI is: "+MyMath.PI);

Console.WriteLine("Cube of 3 is: " + MyMath.cube(3));

}
} Output:

Value of PI is: 3.14

Cube of 3 is: 27

C# static constructor

• C# static constructor is used to initialize static fields.

It can also be used to perform any action that is to be

performed only once. It is invoked automatically

before first instance is created or any static member is

referenced.

• Points to remember for C# Static Constructor

• C# static constructor cannot have any modifier or

parameter.

• C# static constructor is invoked implicitly. It can't

be called explicitly.

C# Static Constructor example

• Let's see the example of static constructor which

initializes the static field rateOfInterest in Account

class.
using System;

public class Account {

public int id;

public String name;

public static float rateOfInterest;

public Account(int id, String name) {

this.id = id;

this.name = name; }

static Account() {

rateOfInterest = 9.5f;

}

public void display() {

Console.WriteLine(id + " " + name+" "+rateOfInterest);

}

}

class TestEmployee{

public static void Main

(string[] args) {

Account a1 = new

Account(101, “Ram");

Account a2 = new

Account(102, “Shyam");

a1.display();

a2.display();

}

} Output:

101 Ram 9.5

102 Shyam 9.5

C# Structs

• In C#, classes and structs are blueprints that are used

to create instance of a class. Structs are used for

lightweight objects such as Color, Rectangle, Point

etc.

• Unlike class, structs in C# are value type than

reference type. It is useful if you have data that is not

intended to be modified after creation of struct..

C# Struct Example

Let's see a simple example of struct Rectangle which has

two data members width and height.
using System;

public struct Rectangle {

public int width, height;

}

public class TestStructs {

public static void Main()

{

Rectangle r = new Rectangle();

r.width = 4;

r.height = 5;

Console.WriteLine("Area of Rectangle is: " + (r.width * r.height));

}

}

Output:

Area of Rectangle is: 20

C# Struct Example: Using

Constructor and Method
Let's see another example of struct where we are using

constructor to initialize data and method to calculate area

of rectangle.
using System;

public struct Rectangle {

public int width, height;

public Rectangle(int w, int h) {

width = w;

height = h; }

public void areaOfRectangle() {

Console.WriteLine("Area of Rectangle is: "+(width*height)); } }

public class TestStructs {

public static void Main() {

Rectangle r = new Rectangle(5, 6);

r.areaOfRectangle();

}

}

Output:

Area of Rectangle is: 30

Note: Struct doesn't support inheritance.

But it can implement interfaces

C# Enum

• Enum in C# is also known as enumeration. It is used to

store a set of named constants such as season, days,

month, size etc. The enum constants are also known as

enumerators. Enum in C# can be declared within or

outside class and structs.

• Enum constants has default values which starts from 0

and incremented to one by one. But we can change the

default value.

• Points to remember

• enum has fixed set of constants

• enum improves type safety

• enum can be traversed

C# enum example changing

start index
using System;

public class EnumExample

{

public enum Season { WINTER=10, SPRING, SUMMER, FALL }

public static void Main()

{

int x = (int)Season.WINTER;

int y = (int)Season.SUMMER;

Console.WriteLine("WINTER = {0}", x);
Console.WriteLine("SUMMER = {0}", y);

}

}

Output:

WINTER = 10

SUMMER = 12

C# enum example for Days

using System;

public class EnumExample

{

public enum Days { Sun, Mon, Tue, Wed, Thu, Fri, Sat };

public static void Main()

{

int x = (int)Days.Sun;

int y = (int)Days.Mon;

int z = (int)Days.Sat;

Console.WriteLine("Sun = {0}", x);

Console.WriteLine("Mon = {0}", y);

Console.WriteLine("Sat = {0}", z);

}

}

Output:

Sun = 0

Mon = 1

Sat = 6

C# enum example: traversing all

values using getNames()
using System;

public class EnumExample

{

public enum Days { Sun, Mon, Tue, Wed, Thu, Fri, Sat };

public static void Main()

{

foreach (string s in Enum.GetNames(typeof(Days)))

{

Console.WriteLine(s);

}

}

}

Output:

Sun

Mon

Tue

Wed

Thu

Fri

Sat

C# enum example: traversing all

values using getValues()
using System;

public class EnumExample

{

public enum Days { Sun, Mon, Tue, Wed, Thu, Fri, Sat };

public static void Main()

{

foreach (Days d in Enum.GetValues(typeof(Days)))

{

Console.WriteLine(d);

}

}

}

Output:

Sun

Mon

Tue

Wed

Thu

Fri

Sat

