Credit Structure and Syllabus of Minor Degree Courses

Offered By DEPARTMENT OF MECHANICAL ENGINEERING M. M. UNIVERSITY OF TECHNOLOGY GORAKHPUR-273 010, UP

S. N.	Category	Paper Code	Subject	L	Т	Р	Credit
1.	PE-1	EME-101	Introduction to Robotics	3	1	0	4
2.	PE-3	EEC-352	Introduction to Embedded Systems & Microcontroller Programming	3	0	2	4
3.	PE-5	EME-501	Sensors and Actuators	3	1	0	4
4.	PE-7	EME-701	Industrial Automation	3	1	0	4
		EEC-752	Robotics System and Intelligent Automation	3	1	0	4
5.	PE-9	EME-901	Mechanics of Robotics	3	1	0	4

Minor Degree 1: Robotics and Automation

Minor Degree 2: Energy and Environment

S.	Category	Paper	Subject	L	Т	Р	Credit
N.		Code					
1.	PE-1	EME-102	Fundamentals of Renewable	3	1	0	4
			Energy Sources				
2.	PE-3	EME-302	Renewable Energy Technologies	3	1	0	4
3.	PE-5	EME-502	Energy Storage Systems	3	1	0	4
4.	PE-7	EME-702	Environmental Impact	3	1	0	4
			Assessment				
5.	PE-9	EME-902	Performance Assessment and	3	1	0	4
			Economics				
			Total				20

S.	Category	Paper	Subject	L	Т	Р	Credit
N.		Code					
1.	PE-1	EME-103	Smart Manufacturing	3	1	0	4
2.	PE-3	EME-303	Additive Manufacturing	3	1	0	4
3.	PE-5	EME-503	Smart Materials and Structures	3	1	0	4
4.	PE-7	EME-703	Automation in Manufacturing	3	1	0	4
5.	PE-9	EME-903	Machine Learning for Production Optimization	3	1	0	4
Total							20

Minor Degree 4: Computational Engineering

S. N.	Category	Paper Code	Subject	L	Т	Р	Credit
1.	PE-1	EME-104	Numerical Methods for Engineers	3	1	0	4
2.	PE-3	EME-304	Software Application for Engineering Problem	2	0	4	4
3.	PE-5	EME-504	Computational Modelling & Simulation	3	0	2	4
4.	PE-7	EME-704	Optimization Techniques in Engineering	3	1	0	4
5.	PE-9	EME-904	Finite Element Methods	3	1	0	4
			Total				20

The Department of Mechanical Engineering offers the following minor degree courses for undergraduate B.Tech. Students. Program of other departments in MMMUT Gorakhpur.

Minor Degree Courses offered by the Mechanical Engineering Department (For the B.Tech. students of another Department)

- For the holistic development of students, in accordance with the NEP-2020 and AICTE guidelines, students may earn an additional 20 credits through minor degree courses offered by various departments of the University from Semester IV to VIII.
- 2. Minor degree courses are optional, but it will be helpful to align with the needs of industries.
- Students can only opt for one minor degree course during their studies of the B.Tech. program
- 4. If students complete all 5 PE (professional elective) category courses offered for the minor degree (a total of 20 credits) from another department for a minor degree, they will receive a B.Tech. Degree in his/her branch.
- 5. No extra fee for a minor degree course will be charged to the students
- 6. In case a student is unable to complete all 5 PE courses as offered by the other department for a minor degree at the time of completion of B. Tech. program in his/her own branch, then the student will get B. Tech. degree in his/her own branch without completing the minor degree course from another Department.
- 7. The minor degree course may be offered by the department through MOOC, as per the guidelines in B. Tech. ordinance 3.0 for the MOOC course.

S. N.	Category	Paper Code	Subject	L	Т	Р	Credit
1.	PE-1	EME-101	Introduction to Robotics	3	1	0	4
2.	PE-3	EEC-352	Introduction to Embedded	3	0	2	4
			Systems & Microcontroller				
			Programming				
3.	PE-5	EME-501	Sensors and Actuators	3	1	0	4
4.	PE-7	EME-701	Industrial Automation	3	1	0	4
		EEC-752	Robotics System and	3	1	0	4
			Intelligent Automation				
5.	PE-9	EME-901	Mechanics of Robotics	3	1	0	4

Minor Degree 1: Robotics and Automation

EME-101	INTRODU	СТ	TION TO ROBOTICS					
Course catego	ory	:	Professional Elective (PE)					
Pre-requisite	Subject	:	NIL					
Contact hour	s/week	:	Lecture: 3, Tutorial: 1, Practical: 0					
Number of C	redits	:	4					
Course Asses	sment	:	Continuous assessment is done through tutorials, attendance, home					
methods			assignments, guizzes, a minor test, and a major theory.					
Course Outco	mes	•	The students are expected to be able to demonstrate the following knowledge	ae				
	Jines	·	skills, and attitudes after completing this course	<u>s</u> c,				
1. The stude	ents should be	e to	classify the manipulators and understand the specification.					
2. Students	should be abl	le t	o understand the mechanical engineering concepts used in robotics.					
3. The stude	ents should be	e al	ble to perform a simple kinematics analysis of the manipulator.					
4. The stude	nts should ur	nde	erstand the concept of control techniques.					
5. The stude	ents should be	e al	ble to write a computer program for the robot.					
6. Students	should be abl	le t	o understand the application of robots in various fields.					
Topics Cover	ed							
UNIT-I								
Introduction				9				
Definition, C	lassification	0	f Robots. Geometric classification and control classification. Robot	-				
Components,	manipulator.	. co	ontroller and its elements, sensory devices, Functions of a robot system.					
and Robot spe	ecifications a	nd	applications.					
Robot Sensor	·s		11					
Introduction,	Classification	1, p	position sensors, velocity sensors, acceleration sensors, and proximity					
sensors. Deve	lopments in	sei	nsor technology using sensory control Vision.					
UNIT-II	1							
Mechanical (Components			9				
Introduction,	Linear motio	on.	Rotational motion, Moment of Inertia-calculation and measurement,					
Mechanical w	ork and pow	ver.	Motion conversion, Rotary-to-rotary motion, Rotary-to-linear motion.					
Manipulator	Kinematics							
Position and o	prientation of	fa	rigid body, Coordinate transformations-translational, rotational, Matrix					
operators, Co	ordinate refe	eren	nce frames, Homogeneous coordinates, Homogeneous transformations,					
manipulator for	orward solution	on,	inverse solution,					
UNIT-III								
Robot Contro	ol			9				
Control Tech	nniques, Dy	nai	mics Systems, Transfer Function and State-Space Representation,					
Performance a	and stability c	of I	Feedback Control, Closed-loop control in position servo, Effect of friction					
and gravity, D	and gravity, DC servomotor, PID Control, Multivariable Robot Control. Stability of Multi-DOF Robot.							
PD Position Control, Inverse Dynamic Control, Force control								
UNIT-IV	-		· · ·					
Programming	g Language			9				
Industrial robot programming languages examples, VAL language, robot programming for welding.								
machine tools, material handling etc.								
Robot applications								
Application of	f robots in su	rge	ery, manufacturing industries, space and underwater. Mobile robots,					
obstacle avoid	ling systems,	, w	alking devices.					
Books & Ref	erences							

- 1. Introduction to Robotics J.J. Craig, Pearson Education
- 2. Introduction to Robotics, S.K.Saha, McGraw Hill Publication
- 3. Robot Dynamics and Control, Mark W. Spong, M. Vidyasagar, John Wiley & Sons
- 4. Robotic Engineering-R.D. Klafter, T.A. Chmielewski and M. Negin, Prentice-Hall International
- 5. Robotics K.S. Fu, R.C. Gonzalez & CSG Lee, McGraw Hill International
- 6. Robotics Engineering-an Integrated Approach Richard D, Klafter, Thomason A Chmiel Owski, Michel Nagin, PHI
- 7. Robotics & Control- R.K. Mittal & I.J. Nagrath, TMH
- 8. Industrial Robotics, Technology, Programming, and Application-Groover. M.P. Mc-Graw Hill
- 9. Robotics Technology and Flexible Automation, S.R. Deb and S. Deb, McGraw Hill Education

EEC-352	Intr	Introduction to Embedded Systems & Microcontroller Programming				
Course Category	:	Program Electives (PE)				
Pre-requisite Subject	:	NIL				
Contact hours/week	:	Lecture:3, Tutorial:0, Practical:2				
Number of Credits	:	4				
Course Assessment methods	:	Continuous assessments through teaching assessment attendance, home assignments, quizzes, one minor test, and one major theory examination.	,			
Course Objectives	:	This course introduces students to embedded systems and microc focusing on system architecture, programming, and real-world inter covers the 8051 microcontroller, Arduino platform, and Raspberry Pr students to design and simulate embedded applications such monitoring, motor control, and multimedia analytics using C/C Python.	ontrollers, rfacing. It i, enabling as sensor C++ and			
Course Outcomes	:	After completing this course, students will be able to show the				
		following knowledge and skills.				
1: Understand what eml	bedde	d systems are and how they differ from general computers.				
2: Learn about the 8051	micro	ocontroller and write simple programs using assembly language.				
3: Know the basics of A	rduin	o, its parts, and how it works.				
4: Write programs in An	duinc	to control lights, motors, sensors, and displays.				
5: Use Raspberry Pi wit	h Pytl	hon to work on sound, image, and sensor-based projects.				
Topics Covered						
Unit I			9			
Introduction to Embe Applications, Block dia	e dded gram	Systems : Introduction to Embedded Systems, Embedded System of embedded systems, Trends in Embedded Industry, Basic Embedded				
System Models, Embed	lded S	ystem development cycle, Challenges for Embedded System Design				
Evolution of computing	syste	ms and applications. Basic Computer architecture: Von-Neumann and				
Harvard Architecture. (Comp	uting performance,				
Inroughput and Latency	y, Bas	ic high-performance CPO architectures, Microcomputer.				
	2.61		9			
Microprocessor: 8086 Microprocessor and its Internal Architecture, Pin Configuration and their functions, Mode of Operation, Introduction to I/O and Memory, Timing Diagrams, Introduction to Interrupts. Introduction to C language, Instruction format, C language programming format, Addressing mode, Instruction Sets, Programming 8086 microprocessor.						
Unit III: 9						
Microcontroller : Introduction to Microcontroller and its families, Criteria for Choosing Microcontroller, 8051-architecture, operation, pin configuration and functions, memory organization, register, I/O ports, addressing modes, instruction sets, instruction classification. Assembly language programming, Interrupts in 8051. Timer/Counter programming for time delay						

generation and waveform generation. Interfacing with ADC, DAC, LEDs and seven segment						
display						
Unit IV:	9					
Arduino and Raspberry Pi: Introduction to the Arduino, creating an Arduino programming						
Environment, Arduino IDE, Arduino programming. Introduction to the Raspberry Pi, basic						
functionality of the Raspberry Pi board and its processor, setting and configuring the board,						
programming on Raspberry Pi						
List of Experiments:						
1. Write an assembly language code to Perform 8 Bit Addition/Subtraction.						
2. To Find the Largest/Smallest Element in an Array Using 8051						
3 Write a program of Flashing LED connected to port 1 of the 8051 Microcontroller						
4 Familiarization of Arduino UNO board and Arduino IDE						
5 Blinking an LED using Arduino UNO						
6 Write a Program to measure Temperature and Humidity using DHT11 Sensor using Arduino						
7 Building Intrusion Detection System with Arduino and Illtrasonic Sensor						
8 Introduction to Raspherry Pi Boards and installation of its Operating System	7. Building inclusion Detection System with Aldunio and Uniasonic Sensor					
9 Find distance using Ultrasonic Sensor with Raspherry Pi						
10 Measurement of light intensity and controlling LED using LDR sensor on Raspberry Pi hoar	d					
Toxt and Rafaranca Roak	u.					
Textheoly						
I EXIDOOK:						
1 Muhammad Ali Maridi Dalin D. Makinlay & Danny Sanaay "DIC Microscontrollar and E	ma ha a da a					
1. Munammod All Mazidi, Kolin D. McKimay & Danny Sansey, FIC Microcontroller and El System SDI LIADT using Assembly & C for DICLS " Deerson International Edition, 2008	mbedded					
System SFI, OAKT using Assembly & Cloir FICIO, real son international Eution, 2000.	System SPI, UART using Assembly & C for PICI8," Pearson International Edition, 2008.					
2. A. N. Sloss, D. Symes, and C. Wright, "ARM System Developer's Guide: Designing and Optimizing						
System Software", Elsevier, 2008						
5. S. Monk, Programming the Kaspberry P1 Micoraw-Hill Education, 2015.						
4. Kaj Kamai, Embedded Systems Architecture, Programming, and Design. (2/e), Tata McGraw Hill, 2008.						
5. K. V. Snibu, introduction to embedded system", McGraw Hill.						
EME 501 CENGODO AND A CELLATORO						

ENIE-501	SENSURS	SENSORS AND ACTUATORS			
Course category			Professional Elective (PE)		
Pre-requisite Subject			NIL		
Contact hours/week			Lecture: 3, Tutorial: 1, Practical: 0		
Number of Credits			4		
Course Assessment			Continuous assessment is done through tutorials, attendance, home		
methods			assignments, quizzes, a minor test, and a major theory.		
Course Outcomes			The students are expected to be able to demonstrate the following knowledge,		
			skills and attitudes after completing this course		

1. Understanding of measurement and measuring instruments, sensors, and transducers.

2. The knowledge of measurements of displacement, pressure, strain, temperature, force, torque with different principles.

- 3. Knowledge of different micro-fabrication techniques.
- 4. Able to understand the fundamentals of micro manufacturing, bulk manufacturing, etc.
- 5. The knowledge of different types of actuators such as pneumatic actuators, hydraulic actuators, singlephase motor, 3-phase motor, induction motor, synchronous motor, stepper motors, and servo motors.

9

6. The knowledge of different actuation materials such as piezo electric and shape memory alloys etc.

Topics Covered

UNIT-I

Brief overview of measurement:

Measurement systems, measurement variables, Introduction to Instruments, Simple instrument	
model, Modifying and Interfering Inputs, characteristics of instruments, Static characteristics,	
Accuracy, Precision, Resolution, sensitivity, linearity, and stability etc., Dynamic characteristics,	
speed of response, fidelity, lag, dynamic errors etc., calibration of instruments.	
UNIT-II	
Sensors: Classification of sensors, Measurement of physical quantities with working principles,	9
displacement sensors, position sensors, motion sensors, tactile and proximity sensors, strain gauge	
sensors, force sensors, temperature sensors. Optical encoder, ultrasonic transducers etc.	
UNIT-III	
Sensor-fabrication technologies: Miniaturization, need of miniaturization, classification of micro-	9
fabrication, Ion-implantation, Diffusion, Photolithography, Introduction to micro-fabrication	
technologies, Bulk micromachining, surface micromachining, LIGA, assembly, and packaging.	
UNIT-IV	
Pneumatic and hydraulic actuation systems: definition, example, types, selection. Pneumatic	9
actuator. Electro-pneumatic actuator. Hydraulic actuator, control valves and valve selection.	
Electrical actuation systems: Electric motors; single phase motor; 3-phase motor; induction motor;	
synchronous motor; stepper motors and servo motors, solid-state switches, solenoids.	
Books & References	
1. Measurement, Instrumentation, and Sensors Handbook. John G. Webster, Editor-in-chief, CRC Pre	ess
1999).	
2. Handbook of modern Sensors. Jacob Fraden, AIP Press, Woodbury (1997).	
3. An Introduction to Microelectromechanical Systems Engineering. Nadim Maluf, Artech House	
Publishers, Boston (2000).	
4. Fundamentals of Microfabrication. Marc Madou, CRC Press, Boca Raton (1997).	
5. Micromachined Transducers. Gregory Kovacs, "", McGraw-Hill, New York (1998).	
6. Measurement Systems - Application and Design. E. O. Deobelin and D. Manik, Tata McGraw-Hil	11
(2004).	

- 7. Principles of Industrial Instrumentation. D. Patranabis, Tata McGraw-Hill, eleventh reprint (2004).
- 8. Instrument Engineers' Handbook: Process Measurement and Analysis. B. G. Liptak, CRC (2003).

EME-701	701 Industrial Automation				
Course category		Professional Elective (PE)			
Pre-requisite	Subject :	NIL			
Contact hour	s/week :	Lecture: 3, Tutorial: 1, Practical: 0			
Number of C	redits :	4			
Course Asses	sment :	Continuous assessment is done through tutorials, attendance, home			
methods		assignments, quizzes, a minor test, and one major examination.			
Course Outcomes		The students are expected to be able to demonstrate the following knowledge,			
		skills and attitudes after completing this course			
1. Under	rstand the prir	ciples, strategies, and levels of automation in modern production systems,			
incluc	ding production	n economics			
2. Analyze various n		thods of automated material transport, flow lines, transfer mechanisms, and			
buffer	r storage syste	ns.			
3. Evalu	ate types and d	esign aspects of material handling equipment, AGVs, and conveyor systems in			
auton	nated environn	nents.			

4. Understand automated storage and retrieval systems (AS/RS) and product identification technologies like barcodes and RFID.

5. Explore the design and types of automated assembly systems and different control technologies used in industrial automation.

 Apply principles and methods of automated inspection and testing, including CMMs, sensor machine vision systems. 	s, and
Topics Covered	
UNIT-I	9
Introduction: Definition and scope of industrial automation, Benefits and challenges of	
automation, Types of automation, Overview of automation pyramid, Industry 4.0 and smart	l
manufacturing, Automation in Production System, Principles and Strategies of Automation, Basic	l
Elements of an Automated System, Advanced Automation Functions, Levels of Automations.	l
Production Economics.	
UNIT-II	9
Material Transport and Safety and Standards in Automation: Automated Flow lines, Methods	l
of work part Transport, Transfer Mechanism, and Buffer Storage. Functional safety, Interlocks and	l
fail-safe systems, Industrial standards, Hazardous area classification.	
UNIT-III	9
Material handling and Identification Technologies: The material handling function, Types of	l
Material Handling Equipment, Analysis for Material Handling Systems, Design of the System,	l
Conveyor Systems, Automated Guided Vehicle Systems.	l
Automated Storage Systems: Storage System Performance, Automated Storage/Retrieval	l
Systems, Work-in-process Storage, Product identification system: Barcode, RFID etc.	
UNIT-IV	9
Automated Assembly Systems: Design & Types of Automated Assembly Systems. Different	l
control technologies in automation: Automated Inspection and Testing: Automated Inspection	l
Principles and Methods, Sensor Technologies for Automated Inspection, Coordinate Measuring	l
Machines, Other Contact Inspection Methods, Machine Vision and other optical Inspection	l
Methods.	
Books & References	
1. Industrial Automation: Hands On by Frank Lamb McGraw Hill; 1st edition	
2. Computer Based Industrial Control by Krishna Kant, PHI Learning Pvt. Ltd	
3. An Introduction to Automated Process Planning Systems by Tien Chien Chang & Richard A. V	Vysk,
Prentice Hall Professional Technical Reference	

4. Anatomy of Automation by Amber, George H, Prentice-Hall.

EEC-752	Rob	otics Systems and Intelligent Automation	
Course Category	:	Program Electives	
Pre-requisite Subject	:	NIL	
Contact hours/week	:	Lecture:3, Tutorial:1, Practical:0	
Number of Credits	:	4	
Course Assessment Methods	:	Continuous assessments through teaching assessment, attendance, home assignments, quizzes, one minor test and one major theory examination.	
Course Objectives	:	This course introduces students to the fundamentals of robotics and mechatronics, focusing on robot types, kinematics, dynamics, and trajectory planning. It covers key concepts like sensors, actuators, transformation matrices, control systems, and robotic vision. Students will gain theoretical and practical knowledge to analyze, model, and design robotic systems for real-world applications, with hands-on exposure to simulation and control techniques.	
Course Outcomes	:	The students are expected to be able to demonstrate the following knowledge, skills and attitudes after completing this course.	
1. Understand the	basic	types, structure, and movements of robots, including serial and parallel robots.	
2. Learn how to c	calcula	ate robot motion, speed, force, and plan smooth movement paths.	
3. Identify and e	3. Identify and explain key mechatronic components like sensors, actuators, and electric circuits		
used in automa	ation.		

4. Understand the basics of robotic vision and how robots use cameras and sensors to see and	l respond
to their environment.	
5. Learn how control systems work in robots and apply basic control methods like	PID and
advanced techniques for precise movement.	
Topics Covered	
Unit I:	9
Fundamentals of Robotics and Kinematics	
Introduction - Types and classification of robots, science of robots, technology of robots Elements	
of Robots – Homogeneous transformation, joints and links, link transformation matrices	
actuators, transmission systems, and sensors Kinematics of Serial Robots – Direct and inverse	
kinematics of serial robots, inverse kinematics of a general 6R robot Kinematics of Parallel Robots	
- Loop-closure constraint equations, direct and inverse kinematics of parallel robots, mobility of	
parallel manipulators.	
Unit II.	9
Analysis Dynamics and Turisatory Planning	,
Analysis, Dynamics, and Trajectory Planning Valaaity and Statia Analysis of Manipulators. Lincor and angular valaaity of links. Jacobian for	
velocity and Static Analysis of Manipulators – Linear and angular velocity of links, Jacobian for	
serial and parallel manipulators, singularities, statics of manipulators Dynamics of Serial and	
Parallel Robots	
 Lagrangian formulation, equations of motion, inverse dynamics, and simulation Trajectory Planning 	
- Planning smooth and accurate motion paths for robotic systems, Visualization in	
simulation environment.	
Unit III:	9
Introduction to Mechatronics and Components	
Introduction to Mechatronics – Concept and scope of mechatronics, system design with practica	
examples Electric Circuits and Components – Basic circuit elements, passive and active	
components, applications in automation Sensors – Measurement of position, speed, stress, strain	
temperature, vibration, acceleration, pressure, and flow Actuators – Working principles and types	
electromagnetic actuators, solenoids, relays, electric motors (DC, AC, Stepper, Servo), hydraulid	
	0
	9
Fundamentals of Robotic Vision and Control Systems	
Robotic Vision – Basics of robotic vision systems, use of cameras and sensors for environmenta	
perception and Visualization in simulation environment, Control System Analysis – Feedback	
control fundamentals, system stability, and frequency domain analysis Control System Design -	
State-space representation, Internal Model Control (IMC), PID control design Manipulator	
Control Techniques – Computed torque control, robust and adaptive control, advanced control	
methods including neural networks, soil computing, and force control.	
Text and Reference Books	
Textbook:	_
1. Fu, K.S., Gonzalez, R.C., and Lee, C.S.G., Robotics: Control, Sensing, Vision and Intelligend McGraw-Hill, 2008.	ce, Tata
2. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2006.	
3. Craig, J.J., Introduction to Robotics: Mechanics and Control, Pearson Prentice Hall, 2005.	
4. Wilamowski, B.M., and Irwin, J.D., The Industrial Electronics Handbook – Control and Mecha	atronics
(2nd Edition), CRC Press, Taylor and Francis Group LLC, 2011.	
5. Bolton, W., Mechatronics: Electronic Control Systems in Mechanical and Electrical Engir	neering,
Pearson Education Limited, 2008.	0
6. Horn, B.K.P., Robot Vision, MIT Press, 1986.	
7. Corke, P., Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer	r Tracts
in Advanced Robotics, 2011.	

EME-901	MECHAN	IC	S OF ROBOTICS		
Course category	7	:	Professional Elective (PE)		
Pre-requisite S	ubject	:	NIL		
Contact hours/week		:	Lecture: 3, Tutorial: 1, Practical: 0		
Number of Cre	dits	:	4		
Course Assessn	nent	:	Continuous assessment is conducted through tutorials, attend	lance,	
methods			homework assignments, guizzes, a minor test, and a major	theory	
			examination.	5	
Course Outcom	65	•	The students are expected to be able to demonstrate the following the students are expected to be able to demonstrate the following the students are expected to be able to demonstrate the following the students are expected to be able to be a	owing	
course outcom	knowledge skills and attitudes after completing this course		lowing		
1 Understand	ing the types	s of	manipulators and its components		
2 The studen	ts should b	e a	he to calculate the degrees of freedom of the manipulator and	the	
2. The student	ion motriv	e a	the to calculate the degrees of freedom of the manipulator and	the	
2 The student	a should have	- 1- 1	to nonform the line metics of a seriel manipulator using D II conven	tiona	
5. The student		1	to perform the kinematics of a serial manipulator using D-H conven	uons.	
4. The student	s snould und	iers	tand the concepts of workspace and singularity.		
5. The student	s should be	abl	e to generate the path and trajectory.		
6. The student	s should be	abl	e to perform the dynamics of the manipulator.		
Topics Covered					
UNIT-I				9	
Introduction					
Manipulator, C	lassification	, Е	nd-Effector, locomotion, and manipulation. Serial and parallel		
manipulators. D	escriptions,	De	gree of Freedom, Examples.		
Transformation	1				
Position and ori	entation, trai	nsfo	rmation and homogeneous transformation matrix.		
UNIT-II				9	
Kinematics of S	Serial Mani	pul	ator		
Kinematic para	neters, diffe	eren	t notations, Denavit-Hartenberg (DH) representation, arm matrix.		
Forward and inv	verse kinem	atic	s. Analytical and numerical solutions. Examples.		
UNIT-III				9	
Jacobian matri	x and Mani	pul	ator statics		
Mapping betwe	en configura	atio	n-space to operational-space. Jacobian matrix and Pseudo inverse		
concepts. Introd	uction to w	ork	space singularities. Manipulator statics: Conservation of energy or		
power, the map	ping betwee	n o	peration-space to configuration-space inputs, examples		
UNIT-IV				9	
Trajectory gen	eration				
Path and Trajec	tory. Config	ura	tion (joint) space trajectory and operational (task) space trajectory		
generations.	generations.				
Manipulator dynamics					
Motion dynamics: Forward and inverse dynamics. Lagrangian (Lagrange-Euler) and Newton-Euler					
formulations. Examples.					
Books & Refer	ences				
1. Introduc	tion to Rob	otic	s – J.J. Craig, Pearson Education		
2. Introduction to Robotics, S.K.Saha, McGraw Hill Publication					
3. Robot E	3. Robot Dynamics and Control, Mark W. Spong, M. Vidyasagar, John Wiley & Sons				
4. Robotic Engineering-R.D. Klafter, T.A. Chmielewski and M. Negin, Prentice-Hall International					
5. Robotic	5. Robotics – K.S. Fu, R.C. Gonzalez & CSG Lee, McGraw Hill International				

- 6. Robotics Engineering-an Integrated Approach Richard D, Klafter, Thomason A Chmiel Owski, Michel Nagin, PHI
- 7. Robotics & Control- R.K. Mittal & I.J. Nagrath, TMH
- 8. Industrial Robotics, Technology, Programming, and Application-Groover. M.P. Mc-Graw Hill
- 9. Robotics Technology and Flexible Automation, S.R. Deb and S. Deb, McGraw Hill Education

Minor Degree 2: Energy and Environment

S.	Category	Paper	Subject	L	Т	Р	Credit
N.		Code					
1.	PE-1	EME-102	Fundamentals of Renewable	3	1	0	4
			Energy Sources				
2.	PE-3	EME-302	Renewable Energy	3	1	0	4
			Technologies				
3.	PE-5	EME-502	Energy Storage Systems	3	1	0	4
4.	PE-7	EME-702	Environmental Impact	3	1	0	4
			Assessment				
5	PF-9	EME-902	Performance Assessment and	3	1	0	4
5.	1 L-7	LIVIL-702	Feonomies	5	1	U	7
	1						
			Total				20

EME-102 Fundamentals of Renewable Energy S	Durces			
Course category : Professional Elective (PE)				
Pre-requisite Subject : NIL				
Contact hours/week : Lecture: 3, Tutorial: 1, Pra	ctical: 0			
Number of Credits : 4				
Course Assessment : Continuous assessment is	done through tutorials, attendance, home			
Methods assignments, quizzes, a min	or test, and a major theory.			
Course Outcomes:The students are expected knowledge, skills, and attit	l to be able to demonstrate the following udes after completing this course			
1. Explain the principles of renewable energy conv	ersion processes and analyze the global and			
Indian renewable energy availability.				
2. Introduction of various renewable energy sour	ces with its social as well as environmental			
implications and the concept of the Internet of E	nergy (IoE).			
3. Fundamentals of solar energy with its character	istics as well as measurements and various			
hydraulic energy systems.				
4. Principles, characteristics and limitations of will	id and tidal energy.			
5. Introduction to biomass energy with its con	version technologies and various practical			
applications. 6 Principles limitations and applications of geot	hermal energy			
Topics Covered	ierinar energy.			
INIT_I	9			
Introduction to Donowable Energy				
Dringinlas of renewable energy and sustainable devale	nment Global and Indian renewable			
energy availability and potential Overview of solar	wind hydraulic tidal wave ocean			
thermal biomass geothermal and oil shale energy Social and environmental implications				
of renewable energy. Introduction to the Internet of Energy (IoE) and its applications				
of renewable energy, introduction to the internet of Ene	(IOD) and its approactions.			
UNIT-II	9			
Solar and Hydraulic Energy Fundamentals				
Solar radiation: Characteristics, estimation on horiz	contal and inclined surfaces, Solar			
radiation measurement: Pyrheliometers, Pyromet	ers, Sunshine Recorders, Solar			
photovoltaic systems: Principles, advantages, and limit	tations, Hydraulic energy: Principles			
of hydropower, types of turbines (Pelton, Francis, K	aplan), and small-scale hydropower			
systems.				
UNIT-III	9			
Wind and Tidal Energy				
Wind energy: Properties, availability in India, wind w	elocity, and power estimation. Wind			
Energy Conversion Systems (WECS): Components, c	lassification (Horizontal axis: single,			
double, multi-blade; vertical axis: Savonius, Darrieus).	maning matheda Adamstration 1			
Haal energy: Mechanics, characteristics, and harnessing methods, Advantages and				
INIT_IV	0			
Biomass and Ceothermal Energy				
Biomass and Ocomerman Energy Biomass energy photosynthesis biofuels and bion	hass resources. Biomass conversion			
technologies: fixed dome urban waste to energy	gasification: Geothermal energy			
Principles availability and extraction methods: Cha	lenges and opportunities in biomass			
and geothermal energy utilization.	and opportantities in cicilias			
Rooks & References	I			

- 1. Duffie, J. A., & Beckman, W. A. (2013). *Solar Engineering of Thermal Processes*, Fourth Edition, Wiley.
- 2. Tiwari, G. N., & Ghosal, M. K. (2007). *Fundamentals of Renewable Energy Sources*. Alpha Science International Limited.
- 3. Mukherjee, D., & Chakrabarti, S. (2004). *Fundamentals of Renewable Energy Systems*. New Age International.
- 4. Kothari, D. P., Singal, K. C., & Ranjan, R. (2011). *Renewable Energy Sources and Emerging Technologies*. PHI Learning Pvt. Ltd.
- 5. Paish, O. (2002). *Small Hydropower: Technology and Current Status*. Renewable and Sustainable Energy Reviews.

EME-302 Renewa	ble	Energy Technologies		
Course category	:	Professional Elective (PE)		
Pre-requisite Subject	:	NIL		
Contact hours/week	:	Lecture: 3, Tutorial: 1, Practical: 0		
Number of Credits	:	4		
Course Assessment	:	Continuous assessment is done through tutorials, attendance, h	ome	
methods		assignments, quizzes, a minor test, and a major theory.		
Course Outcomes	:	The students are expected to be able to demonstrate the follow	wing	
		knowledge, skills, and attitudes after completing this course.		
1. Design solar therma	al ai	nd photovoltaic systems for energy generation.		
2. Analyze wind energy	gy c	onversion technologies for efficiency.		
3. Evaluate hydraulic	and	ocean energy systems for practical applications.		
4. Apply biomass con	vers	sion technologies for energy production.		
5. Develop hybrid ren	ewa	able energy systems for decentralized power.		
6. Integrate renewable	e tec	hnologies into existing energy infrastructure.		
Topics Covered				
UNIT-I			9	
Advanced Solar Energy	[,] Te	chnologies		
Solar thermal power pla	ants	· Parabolic trough solar tower and dish systems		
Photovoltaic systems: N	And	ule efficiency balance of systems, and performance analysis		
Energy storage for solar: Batteries, thermal storage, and emerging technologies. Applications				
of solar energy in rural and urban settings.				
of solar energy in fatar and aroun settings.				
UNIT-II			9	
Wind and Hydraulic En	erg	y Systems		
Aerodynamics of wind	turł	bines: Blade design and performance optimization.		
Hydropower technolog	ies:	Large-scale dams, run-of-river, and micro-hydropower systems.		
Hydraulic Turbine Des	ign	and Efficiency: Selection Criteria for Turbines.		
Wind farm planning: Si	te s	election, layout, and grid integration.		
UNIT-III			9	
Ocean and Tidal Energy	y Te	echnologies		
Ocean Thermal Energy	Co	nversion (OTEC): Principles, types, and global installations.		
Wave energy converter	s: C	Oscillating water columns, point absorbers, attenuators.		
Tidal barrages and tidal	l str	eam systems: Design and environmental considerations. Future		
prospects of ocean ener	gy	technologies.		
UNIT-IV	05	U	9	
Biomass and Hybrid Sy	ster	ns		
Advanced biomass con	vers	sion: Anaerobic digestion, pyrolysis, and co-firing.		
Hybrid renewable energy	gy s	ystems: Solar-wind, solar-hydraulic, and multi-source integration.		
Energy management in	n de	ecentralized power systems, Case studies on renewable energy		
technology implementa	tion	1 <i>y y</i> 18.		
Books & References			L	

- 1. Sukhatme, S. P. (2005). Solar Energy: Principles of Thermal Collection and Storage. Tata McGraw Hill.
- 2. Sørensen, B. (2017). Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning. Academic Press.
- 3. Boyle, G. (2012). Renewable Energy: Power for a Sustainable Future. Oxford University Press.
- 4. Kalogirou, S. A. (2013). Solar Energy Engineering: Processes and Systems. Academic Press.
- 5. Dixon, S. L., & Hall, C. A. (2014). Fluid Mechanics and Thermodynamics of Turbomachinery. Butterworth-Heinemann.

EME-502	Energy	Sta	orage Systems			
Course catego	ry	:	Professional Elective (PE)			
Pre-requisite S	Subject	:	NIL			
Contact hours	/week	:	Lecture: 3, Tutorial: 1, Practical: 0			
Number of Cr	edits	:	4			
Course As	Course Assessment : Continuous assessment through tutorials, attendance, h			ome		
methods			assignments, quizzes, practical work, record, viva voce and One M	linor		
test and One Major Theory.						
Course Outco	mes	:	The students are expected to be able to demonstrate the follow	ing		
			knowledge, skills and attitudes after completing this course	_		
1. Explain the	e principles	of	various energy storage technologies.			
2. Analyze th	e performa	nce	e of battery storage systems.			
3. Evaluate th	ermal and	me	chanical storage systems for renewable integration.			
4. Design ene	rgy storage	e sc	lutions for specific applications.			
5. Assess the	economic v	vial	bility of storage systems.			
6. Integrate st	orage syste	ems	s with renewable energy technologies including hydraulic systems.			
Topics Covere	d					
UNIT-I						
Introduction t	o Energy S	Sto	rage	9		
Need for energ	gy storage	in	renewable energy systems, including hydraulic energy, Types of			
energy storage: Electrochemical, thermal, mechanical, and electrical, Key parameters: Energy						
density, power	density, e	effi	ciency, and lifespan, Role of energy storage in grid stability and			
renewable integ	gration.					
UNIT-II	~					
Battery Storag	ge Systems			9		
Principles of	electrocher	mic	al storage: Lead-acid, lithium-ion, and flow batteries, Battery			
performance:	Charge-dis	scha	arge cycles, efficiency, and degradation, Battery management			
systems (BMS)	and safety	co	nsiderations, Applications of batteries in renewable energy systems,			
including hydro	opower.					
		10	4	0		
I nermal and I	viecnanica	II 5	torage	9		
I nermal storag	ge: Sensible	e n	eat, latent neat, and thermochemical storage, Mechanical storage:			
Pumped nydro, compressed air energy storage (CAES), flywheels, Performance analysis and						
entering of mermai and mechanical systems, integration with solar mermal, hydraulic, and						
UNIT IV						
Emorging Stor	raga Taabi	nal	agias and Applications	0		
Emerging tech	age Ittill		ugius anu Applications d-state batteries, hydrogen storage, superconneitors, Hybrid storage	2		
systems. Com	ining mul	tin1	e storage technologies for renewable integration. Case studies on			
energy storage	anarray storage in microgrids and off arid systems including hydronowar Challenges and future					
trends in energy	trends in energy storage development					
Rooks & Rofo	y storage u		copinent.			
DUUKS & KEIE	CIICES					

- 1. Huggins, R. A. (2010). Energy Storage. Springer.
- 2. Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical Energy Storage for the Grid: A Battery of Choices. Science.
- 3. Züttel, A., et al. (2011). Hydrogen as a Future Energy Carrier. Wiley.
- 4. Ter-Gazarian, A. (2011). Energy Storage for Power Systems. IET.

EME-702	F	nvironmental Impact Assessment	
Course category	:	Professional Elective (PE)	
Pre-requisite Subject	:	NIL	
Contact hours/week	:	Lecture: 3, Tutorial: 1, Practical: 0	
Number of Credits	:	4	
Course Assessment methods	:	Continuous assessment is conducted through tutorials, atten homework assignments, quizzes, a minor test, and a major examination.	ndance, theory
Course Objectives	:	The objective of this course is to provide students with knowl the concepts, procedures, and methodologies used in Environ Impact Assessment (EIA) to assess the positive and negative imp a project.	edge of nmental pacts of
Course Outcomes	:	 Upon completion of this course, the student will demonstrate the to: 1. Understand the basic concepts of Environmental Assessment (EIA). 2. Understand the processes involved in Environmental In Assessment (EIA) for various projects. 3. Apply various methodologies for adopting Environmental In Assessment at different stages. 4. Understand the concept and scope of Environmental audit applying it in different types of projects. 5. Apply the concept of Environmental Impact Assessment in sectors, like energy, transport, mining etc. 6. Apply the concept of EIA integrated with recent emetechnologies. 	ability Impact mpact mpact ting by various rging
Topics Covered			0
UNIT-I			9
Basic Concepts Definition and Purpose of of EIA, Methods to carry	f Er ou	vironmental Impact Assessment (EIA), Origin and development t EIA, Hierarchy in EIA, Types of EIA	

EIA Process Components of an Environmental Impact Assessment, Potential impacts of a project, Prediction and Mitigation, Management and monitoring, Environment Management Plan, Importance of EIA

9

UNIT-II

EIA Methodologies	
Introduction, Criteria for the selection of EIA Methodology, EIA methods, EIA Screening	
and Scoping, Prediction and Assessment of Environmental Impacts, Mitigation Measures and	
Impact Management, Monitoring, Auditing, and Post-Assessment, Ad Hoc Method, Overlay	
Method	
UNIT-III	9
Environmental Auditing (EA)	
Basic Concepts: Introduction, Objectives, Scope, Types of environmental audits, General	
Audit Methodology	
EA Process, Strategy and Management: Elements of Audit Process, Waste Audits and	
Pollution Prevention Assessments, EA in Industrial Projects	
UNIT-IV	9
Sectoral Applications of EIA	
EIA in Energy Sector (Thermal Power Projects, Oil & Gas Exploration), Land use planning	
and management, EIA in Agriculture, Cement Industries, and Mining Projects	
Emerging Trends in EIA	
Strategic Environmental Assessment, Climate Change and EIA, Public Participation and	
Social Impact Assessment	
Textbooks and References:	
1. Wathern P., "Environmental Impact Assessment: Theory and Practice", Rou	utledge
Publishers.1990	0
2. Glasson J., Therivel Riki, Chadwick Andrew, "Introduction to Environmental Ir	npact
Assessment". Oxford Brookes University 2012/4th edition	1
3. Shrivastava A.K., Baxter Nicola, Grimm Jacob, "Environmental Impact Assessment".	APH
Publishers, 2003	
4. Marriott B., "Environmental Impact Assessment: A Practical Guide". McGra	w-Hill
Publication,1997	
5. Anjaneyulu Y., Manickam Valli, "Environmental Impact Assessment Methodologies", CRC	C Press
2011	
6. Whitelaw, K. and Butterworth, ISO 14001: Environmental System Handbook, 1997	

EME-902	Perform	an	ce Assessment and Economics
Course category	7	:	Professional Elective (PE)
Pre-requisite Su	ıbject	:	NIL
Contact hours/v	veek	:	Lecture: 3, Tutorial: 1, Practical: 0
Number of Crea	lits	:	4
Course Assessment		:	Continuous assessment is conducted through tutorials, attendance,
methods			homework assignments, quizzes, a minor test, and a major theory
			examination.
Course Outcom	es	:	Upon completing this course, students are expected to demonstrate the
			following knowledge, skills, and attitudes.
1. Evaluate the performance of renewable energy systems, including hydraulic energy.		of renewable energy systems, including hydraulic energy.	
2. Conduct economic analysis of renewable energy projects.		s of renewable energy projects.	

3. Apply performance metrics to optimize system efficiency.	
4. Assess financial viability using cost-benefit analysis.	
5. Analyze policy incentives for renewable energy adoption.	
6. Develop strategies for cost-effective renewable energy deployment.	
Topics Covered	
UNIT-I	9
Performance Metrics for Renewable Energy Systems	
Key performance indicators: Efficiency, capacity factor, and energy yield, Performance	
assessment of solar, wind, hydraulic, and biomass systems. Data collection and monitoring	
techniques for renewable systems.	
Factors affecting system performance: Environmental and operational.	
UNIT-II	9
Economics of Renewable Energy Systems	
Cost components: Capital, operational, and maintenance costs for renewable systems,	
including hydropower.	
Economic metrics: Net present value (NPV), internal rate of return (IRR), payback period.	
Levelized cost of energy (LCOE) for renewable energy systems, Sensitivity analysis for	
economic feasibility.	
	9
Financial Mechanisms and Policy Incentives	
Financing models: Grants, loans, and public-private partnerships for renewable projects,	
Government policies and subsidies for renewable energy, including hydropower, impact of	
carbon pricing and renewable energy certificates.	
Case studies on successful renewable energy financing.	
	9
Optimization and Cost Reduction Strategies	
System optimization: Design improvements and technology upgrades for renewable systems;	
Strategies for reducing their lifecycle costs, including hydraulic energy.	
Role of digital tools and lo1 in performance monitoring.	
Future trends in cost-effective renewable energy deployment.	
Books & References	
1. Short, W., Packey, D. J., & Holt, T. (1995). A Manual for the Economic Evaluation of E	nergy
Efficiency and Renewable Energy Technologies. NREL.	
2. Stoft, S. (2002). Power System Economics: Designing Markets for Electricity. Wiley-IE	,EE
Press.	
5. Sørensen, B. (2017). Kenewable Energy: Physics, Engineering, Environmental Impa-	ets,
Economics and Planning. Academic Press.	
4. I widell, J., & weir, I. (2015). Kenewable Energy Resources. Routledge.	

S.	Category	Paper	Subject	L	Т	Р	Credit
N.		Code					
1.	PE-1	EME-103	Smart Manufacturing	3	1	0	4
2.	PE-3	EME-303	Additive Manufacturing	3	1	0	4
3.	PE-5	EME-503	Smart Materials and Structures	3	1	0	4
4.	PE-7	EME-703	Automation in Manufacturing	3	1	0	4
5.	PE-9	EME-903	Machine Learning for Production Optimization	3	1	0	4
			Total				20

Minor Degree 3: Smart Manufacturing

EME-103 Smart Ma		nu	facturing
Course catego	ory	:	Professional Electives (PE)
Pre-requisite	Subject	:	NIL
Contact hours/week		:	Lecture: 4, Tutorial: 0, Practical: 0
Number of Credits		:	4
Course Assessment		:	Continuous assessment through tutorials, attendance, home assignments,
methods			quizzes, one Minor test and one Major Theory
Course Outcomes		:	The students are expected to be able to demonstrate the following
			knowledge, skills and attitudes after completing this course

1. Discuss the importance and be able to critically discuss the role of smart manufacturing systems in industry.

2. To understand basic concept of Smart Manufacturing/Industry-4.0.

3. To proficient with various hardware and software used in Advanced Automation, and Smart Manufacturing systems.

9

9

9

9

4. To build and assess cyber security enabled applications for manufacturing and supply chain.

5. To provide consulting services in the field of Smart Manufacturing Systems.

6. To pursue higher education in advancements in the field of Smart Manufacturing Systems.

Topics Covered

UNIT-I

Introduction to Smart Manufacturing

Introduction to smart manufacturing, difference from conventional/legacy manufacturing; Smart Manufacturing Processes Dimensions: Demand Driven and Integrated Supply Chains; Dynamically Optimized Manufacturing Enterprises (plant + enterprise operations); Real Time, Sustainable Resource Management (intelligent energy demand management, production energy optimization and reduction of GHG).

UNIT-II

Smart Design/ Fabrication

Smart Design/Fabrication - Digital Tools, Product Representation and Exchange Technologies and Standards, Agile (Additive) Manufacturing Systems and Standards. Mass Customization, Smart Machine Tools, Robotics and Automation (perception, manipulation, mobility, autonomy), Smart Perception – Sensor networks and Devices.

UNIT-III

Smart Communication system

Information, Mobility, Communication Technologies, Protocols, Cyber Physical Systems – the next generation of Embedded Systems and Networks, IT and OT convergence, co-creation and collaboration enablement. Smart Cloud- Hyper scale Computing; Application Delivery.

UNIT-IV

Smart Applications

Online Predictive Modeling, Monitoring and Intelligent Control of Machining/Manufacturing and Logistics/Supply Chain Processes; Smart Energy Management of manufacturing processes and facilities.

Books & References

- 1. Bahga and V. Madisetti, Internet of Things, A hands-on approach, CreateSpace Independent Publishing Platform, 1st edition, 2014, ISBN: 978-0996025515.
- 2. R. Zurawski, Integration Technologies for Industrial Automated Systems, 1st edition, CRC Press, 2006, ISBN: 9780849392627
- 3. S. Jeschke, C. Brecher, H. Song, and D. B. Rawat, Industrial Internet of Things: Cybermanufacturing Systems, Springer, 1st edition, 2017, ISBN: 978-3319425580.
- 4. D. Boswarthick, O. Elloumi, and O. Hersent, M2M communications: A systems approach, Wiley, 1st edition, 2012, ISBN: 978-1119994756.
- 5. Anton-Haro and M. Dohler, Machine-to-machine (M2M) Communications: Architecture, Performance and Applications, Woodhead Publishing, 1st edition, 2015, ISBN: 978-1782421023.
- 6. G. Alciatore and M. B. Histand, Introduction to Mechatronics and Measurement Systems, McGraw-Hill, 4th edition, 2014, ISBN: 978-9339204365.
- 7. F. Cecelja, Manufacturing Information and Data Systems, 1st edition, ButterworthHeinemann, 2002, ISBN: 9781857180312.

EME 303		Additive Manufacturing			
Course category	:	Professional Electives (PE)			
Pre-requisite Subject	:	NIL			
Contact hours/week	:	Lecture: 3, Tutorial: 1, Practical: 0			
Number of Credits	:	4			
Course Assessment	:	Continuous assessment through tutorials, attendance,	home		
methods		assignments, quizzes, one Minor test and one Major Theory			
Course Outcomes	:	The students are expected to be able to demonstrate the foll knowledge, skills, and attitudes after completing this course	owing		
 CO1: Understand the fundamental principles and historical evolution of Additive Manufacturing (AM) technologies CO2: Analyze and resolve data-related issues in AM including STL file errors, digital inspection, and network-based operations CO3: Demonstrate knowledge of materials used in AM and understand the impact of solidification, microstructure, and material properties on part performance CO4: Compare and contrast various AM processes based on materials and working principles (e.g., powder-based, solid-based, droplet-based) CO5: Apply concepts of monitoring, control, and defect mitigation in AM to enhance product quality CO6: Integrate the knowledge of reverse engineering and traditional manufacturing with AM for applications like rapid prototyping and tooling 					
			0		
UNIT-1 Introduction to Additive Manufacturing (AM) Historical developments, Fundamentals of RP/AM Systems and their Classification, Rapid prototyping process chains, 3D modelling and mesh generation. Data conversion and transmission					
UNIT-II			9		
Additive manufacturing Data base Rapid prototyping data formats, STL format, STL file problems, STL file repair, Network based operations, Digital inspection, Data warehousing and learning from process data; Types of curves and its application in AM.					
UNIT-III					
Materials and Mechanics for	A	M			

Discussion on different materials, multifunctional and graded materials in AM, Role of						
solidification rate, Evolution of non-equilibrium structure, Structure property relationship, Grain						
microstructure.						
UNIT-IV	9					
Processing and Applications of different AM Techniques						
Powder-based AM processes involving sintering and melting (selective laser sintering, shaping,						
electron beam melting. involvement). Printing processes (droplet based 3D Solid-based AM						
processes, extrusion based fused deposition modeling, Stereolithography, Micro- and nano-						
additive. Discussion on applications of different AM processes.						
Monitoring and control of defects. Introduction to reverse engineering Traditional manufacturing						
via AM. Direct processes – Rapid Prototyping, Rapid Tooling.						
Books & References						
1. Rapid Manufacturing: An Industrial Revolution for the Digital Age. Neil Hopkinson, Richard H	łague,					

- Philip Dickens (Editors); Wiley; Jan., 2006; ISBN: 10: 0470016132; 13: 978-0470016138.
 Additive Manufacturing Technologies; Rapid Prototyping to Direct Digital Manufacturing. Ian Gibson, David W. Rosen, Brent Stucker; Springer; January, 2010; ISBN: 978-1-4419-1119-3.
- Rapid Prototyping: Principles and Applications. Rafiq I. Noorani; Wiley; Oct., 2005; ISBN: 10: 0471730017; 13: 978-0471730019.
- 4. User's Guide to Rapid Prototyping. Todd Grimm; Society of Manufacturing Engineers; February, 2004; ISBN: 0-87263-697-6.
- 5. Rapid Prototyping Laser-based and Other Technologies. Patri K. Venuvinod and Weiyin Ma; Kluwer Academic Publishers; October, 2003; ISBN: 1-4020-7577-4.

EME-503		nart Materials and Structures
Course category	:	Professional Electives (PE)
Pre-requisite Subject	:	NIL
Contact hours/week	:	Lecture: 3, Tutorial: 1, Practical: 0
Number of Credits :		4
Course Assessment	:	Continuous assessment through tutorials, attendance, home assignments,
methods		quizzes, one Minor test and one Major Theory
Course Outcomes		The students are expected to be able to demonstrate the following
		knowledge, skills and attitudes after completing this course

CO1: Understand the fundamental principles and types of smart materials including piezoelectric, magnetostrictive, electro-active, shape memory materials, and smart fluids.

CO2: Explain the working principles and applications of various sensors and actuators used in smart structures, including their role in vibration control and structural health monitoring.

CO3: Analyze the behavior of smart composites using micro- and macro-mechanics principles, and model laminated composite structures based on classical plate theory.

CO4: Formulate and simulate the governing equations of motion for smart composite beams and apply finite element modeling for dynamic analysis.

CO5: Apply knowledge of data acquisition, signal processing, and control systems in the context of smart materials and structures.

CO6: Evaluate the latest advancements in smart structures including self-sensing transducers, energy harvesting materials, self-healing polymers, and emergent intelligent systems.

Topics Covered	
UNIT-I	9
Introduction to different types of crystal system	
Introduction to Single Crystals and Polycrystalline, metallic, ionic, covalent and mixed bonding;	
fundamentals of crystallography, crystal systems, unit cells, primitive cells, structures of metals,	
ceramics, polymers, and glass used in composite materials.	
UNIT-II	9
Smart Composites	
Piezoelectric Polymers, Magneto strictive materials, Electro-active Materials, Electronic Materials, Polymer Matrix Composite (PMC), Metal Matrix Composite (MMC), Ceramic Matrix	
Composite (CMC), Nanocomposite, Biomaterials and Biocomposite, Shape Memory Effect, Shape	
Memory Alloys.	
UNIT-III	9
Applications of Smart materials	
Strain gauges, optical fiber sensors, piezoelectric sensors, MEMS sensors, Actuators: Types,	
working principles (piezoelectric, SMA-based, electrostatic, and magnetic), Control systems:	
Basic control strategies for smart structures (PID, fuzzy logic, neural networks).	
UNIT-IV	9
Future Trends of Smart Materials	
Smart structures in aerospace (adaptive wings, morphing structures), Civil infrastructure monitoring (bridges, buildings, seismic damping), Biomedical applications (smart implants, drug delivery systems), Smart composites and morphing materials.	
Challenges, limitations, and research trends in smart materials and structures.	
Books & References	
1. A.V. Srinivasan, Smart Structures – Analysis and Design, 1st Edition, Cambridge University	Press,
New York, 2001.	
2. M. V. Gandhi and B. S. Thompson, Smart Materials and Structures, Chapmen & Hall, London,	1992
3. C. Brian, Smart Structures and Materials, Artech House, 2000	
4. P. Gauenzi, Smart Structures, Wiley, 2009	
5. W. G. Cady, Piezoelectricity, Dover Publication, New York, 2014.	

EME-703	Automati	on	in Manufacturing
Course catego	ory	:	Professional Electives (PE)
Pre-requisite	Subject	••	NIL
Contact hour	s/week	••	Lecture: 4, Tutorial: 0, Practical: 0
Number of C	redits	••	4
Course Asses	sment	••	Continuous assessment through tutorials, attendance, home assignments,
methods			quizzes, one Minor test, and one Major Theory
Course Outcomes		••	The students are expected to be able to demonstrate the following
			knowledge, skills and attitudes after completing this course
1. Underline the Basics of		f k	nowledge of various automation components and systems.

Ζ.	Identify the architecture of the industrial automation system.					
3. Construct the block diagram of an industrial automation and control system and supervisory co						
	and data acquisition (SCADA).					
4.	Categorize industrial parameters like temperature, pressure, force, displacement, speed, flow,	level,				
humidity and pH.						
5.	Combine the automation process of industry through Internet of Things.					
6.	Interpret the programmable logic controllers for industrial automation and use of robot for ind	ustrial				
	applications.					
Tor	ics Covered					
UN	IT-I	9				
Int	roduction to Automation	-				
Aut	omation overview. Requirement of automation systems. Architecture of Industrial Automation					
syst	em. Introduction of PLC and supervisory control and data acquisition (SCADA). Industrial bus					
syst	ems: modbus & profibus. Levels of automation. Automation principles and strategies.					
Adv	vanced automation functions: safety, maintenance.					
UN		9				
Me	shanization and Automation	,				
WIC						
Intr	oduction to Material storage/handling and transport systems, and its automation using AS/RS,					
AG	VS and conveyors etc. Mechanization and automation, product cycle, hard vs. flexible					
auto	omation, Capital- intensive vs. low cost automation. Assembly line Automation: automated					
asse	embly systems, transfer systems, vibratory bowl feeders, non-vibratory feeders, part orienting.					
		0				
UN		9				
Au	amatian basad components					
	omation based components					
Sen	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH					
Sen	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors,					
Sen mea Stej	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves.					
Sen mea Stej	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves.	0				
Sen mea Stej UN	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves.	9				
Sen mea Stej UN Coi	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV Inputer-aided measurement and control systems	9				
Sen mea Stej UN Con Rol	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV Inputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol. man machine, interface, computer sided, process, control hardware, process polated	9				
Sen mea Stej UN Con Rol con	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV Inputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related	9				
Sen mea Stej UN Con Rol con inte	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV Inputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer	9				
Sen mea Stej UN Con Rol con inte tech	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software	9				
Sen mea Stej UN Con Rol con inte tech Boo	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References	9				
Sen mea Stej UN Con Rol con inte tech Boo 1.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS	9 BN 0-				
Sen mea Stej UN Con Rol con inte tech Boo 1.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bs & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X	9 BN 0-				
Sen mea Stej UN Con Rol con inte tech Boo 1.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 978075063	9 BN 0- 39347				
Sen mea Stej UN Con Rol con inte tech Boo 1. 2. 3.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH isurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 978075062 Programmable logic controller, G. Dunning, Delmar, ISBN- 9781401884260	9 BN 0- 39347				
Sen mea Stej UN Con Rol con inte tech Boo 1. 2. 3. 4.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH issurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 978075062 Programmable logic controller, G. Dunning, Delmar, ISBN- 9781401884260 Automation, Production Systems and Computer-Integrated Manufacturing, Mikell P. Gree	9 BN 0- 39347 pover,				
Sen mea Stej UN Con Rol con inte tech Boo 1. 2. 3. 4.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH issurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. TT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 978075063 Programmable logic controller, G. Dunning, Delmar, ISBN- 9781401884260 Automation, Production Systems and Computer-Integrated Manufacturing, Mikell P. Gro Prentice Hall, 2007, ISBN-13: 978-8120334182	9 BN 0- 39347				
Sen mea Stej UN Con Rol con inte tech Boo 1. 2. 3. 4.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software iss & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 97807506: Programmable logic controller, G. Dunning, Delmar, ISBN- 9781401884260 Automation, Production Systems and Computer-Integrated Manufacturing, Mikell P. Gro Prentice Hall, 2007, ISBN-13: 978-8120334182 Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deh	9 BN 0- 39347 pover,				
Sen mea Stej UN Con Rol con inte tech Boo 1. 2. 3. 4. 5.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. IT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software isk & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 978075062 Programmable logic controller, G. Dunning, Delmar, ISBN- 9781401884260 Automation, Production Systems and Computer-Integrated Manufacturing, Mikell P. Gro Prentice Hall, 2007, ISBN-13: 978-8120334182 Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deb Publishing House, 2013, ISBN: 9788184954098.	9 BN 0- 39347 bover, , Jaico				
Sen mea Stej UN Con Rol con inte tech Boo 1. 2. 3. 4. 5.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. TT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 97807506 Programmable logic controller, G. Dunning, Delmar, ISBN- 9781401884260 Automation, Production Systems and Computer-Integrated Manufacturing, Mikell P. Gro Prentice Hall, 2007, ISBN-13: 978-8120334182 Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deb Publishing House, 2013, ISBN: 9788184954098.	9 BBN 0- 39347 bover, , Jaico				
Sen mea Stej UN Con Rol con inte tech Boo 1. 2. 3. 4. 5.	sors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH asurement. Actuators - Principle and selection of mechano-electrical actuators, DC motors, oper Motors, Servo Motors, Brushless DC Motor, Solenoid Actuators, process control valves. TT-IV nputer-aided measurement and control systems e of computers in measurement and control, Elements of computer-aided measurement and trol, man-machine interface, computer-aided process control hardware, process-related rfaces, Communication and networking, Industrial communication systems, Data transfer niques, Computer-aided process control software bks & References Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies, 2003, IS 07-048290-X Industrial control handbook, Parr, Butterworth-Heinemann; 3rd edition, 1998, ISBN: 97807506 Programmable logic controller, G. Dunning, Delmar, ISBN- 9781401884260 Automation, Production Systems and Computer-Integrated Manufacturing, Mikell P. Gra Prentice Hall, 2007, ISBN-13: 978-8120334182 Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deb Publishing House, 2013, ISBN: 9788184954098. Electric Motor Drives, Modelling, Analysis and Control, R. Krishnan, Prentice Hall India, VEND. 078, 012010141	9 BN 0- 39347 bover, , Jaico 2002,				

EME-903		Iachine Learning for Production Optimization
Course category	:	Professional Electives (PE)
Pre-requisite Subject	:	NIL
Contact hours/week	:	Lecture: 3, Tutorial: 1, Practical: 0
Number of Credits	:	4
Course Assessment		Continuous assessment through tutorials, attendance, home assignments,
methods		quizzes, one Minor test, and one Major Theory
Course Outcomes		Upon completing this course, students are expected to demonstrate the
		following knowledge, skills, and attitudes.

CO1: Understand the foundational concepts of Machine Learning, including types of learning, workflows, essential mathematics, and programming tools like Python, NumPy, Pandas, and Scikit-learn.

CO2: Apply data manipulation, model building, and evaluation techniques for supervised and unsupervised learning in production environments.

CO3: Demonstrate the ability to handle data ingestion, transformation, deployment strategies, and monitoring of ML models in real-time production systems.

CO4: Analyze and implement production optimization techniques such as A/B testing, hyperparameter tuning, and model explainability while addressing challenges like data drift, retraining, and security.

CO5: Evaluate real-world case studies on ML applications in production optimization including predictive maintenance, quality control, and inventory management.

CO6: Design, develop, and deploy a machine learning model for a real-world production optimization problem using project-based learning and present findings effectively.

9

9

9

9

Topics Covered

UNIT-I

Introduction to Machine learning

Define Machine learning, Types of learning (Supervised, Unsupervised, Reinforcement), machine learning workflow, basic mathematics for machine learning, and programming basics (Python: NumPy, Pandas, Scikit-learn).

UNIT-II

Machine Learning in Production

Data ingestion and transformation, model training and evaluation, model deployment and monitoring. UNIT-III

Production Optimization Techniques: A/B testing and experimentation, hyperparameter tuning, model Explainability.

Production Challenges and Solutions: Data drift and concept drift, model degradation and retraining and security and privacy considerations.

UNIT-IV

Project-Based Learning

Students will work on a real-world production optimization problem, develop a machine learning model and deploy it in a simulated environment, present their findings and discuss challenges and solution.

Books & References

- 1. Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications (Addison-Wesley Data & Analytics Series)
- 2. Optimization in Machine Learning and Applications (Anand J. Kulkarni, Suresh Chandra Satapathy, Springer Nature)
- 3. Python Crash Course, 2nd Edition: A Hand: A Hands-On, Project-Based Introduction to Programming by Eric Matthes

Minor Degree 4: Computational Engineering

S. N.	Category	Paper	Subject	L	Т	Р	Credit
		Code					
1.	PE-1	EME-104	Numerical Methods for	3	1	0	4
			Engineers				
2.	PE-3	EME-304	Software Application for	2	0	4	4
			Engineering Problem				
3.	PE-5	EME-504	Computational Modelling &	3	0	2	4
			Simulation				
4.	PE-7	EME-704	Optimization Techniques in	3	1	0	4
	-		Engineering			-	
5.	PE-9	EME-904	Finite Element Methods	3	1	0	4
			Total				20

EME-104 Numerical Methods for Engineers					
Course category : Professional Electives (PEs)					
Pre-requisite Subject : NIL					
Contact hours/week : Lecture: 3, Tutorial: 1, Practica	ıl: 0				
Number of Credits : 4					
Course Assessment : Continuous assessment throug	tutorials, attendance, home assignments,				
methods quizzes, viva voce, one Minor	tests and One Major Theory exam.				
Course Outcomes : The students are expected to be able to demonstrate the following knowledge, skills and attitudes after completing this course					
 Understanding of fundamentals and errors in numerical methods and their application in engineering. Ability to solve linear and nonlinear algebraic equations using numerical methods. Knowledge of interpolation, curve fitting, numerical differentiation and integration techniques. Ability to solve ordinary and partial differential equations numerically. Develop algorithms and code using MATLAB/Python to solve practical engineering problems. 					
· · · · · · · · · · · · · · · · · · ·					
Topics Covered					
UNIT-I	9				
Fundamentals of Numerical Methods					
Introduction to numerical computation, sources of error, error	propagation and stability.				
Solution of algebraic and transcendental equations: Bisect	ion. Regula-Falsi. Newton-Raphson				
methods.					
Linear system of equations: Gauss Elimination. Gauss-Seide	l. LU Decomposition.				
UNIT-II	9				
Interpolation and Curve Fitting Finite difference operators, Newton's forward, backward a Lagrange interpolation. Curve fitting: Least squares method, Linear and polynomial Numerical Differentiation and Integration: Finite difference Simpson's rules. Thermometers, bimetallic thermocouples, t	and central difference interpolation, regression. e approximations, Trapezoidal rule, hermistors, and pyrometers				
UNIT-III	9				
Ordinary Differential Equations Euler's method, Modified Euler's, Runge-Kutta methods of 2 methods. Boundary Value Problems and Applications in Engineering.	nd and 4th order, Predictor-Corrector				
UNIT-IV	9				
Partial Differential Equations and Advanced Applications Finite difference methods for PDEs: Elliptic, Parabolic and H convergence of numerical schemes. Introduction to numerical linear algebra and eigenvalue proble	yperbolic equations., Stability and				
Books & References					
 S.S. Sastry, Introductory Methods of Numerical Analysis, PHI. Steven C. Chapra & Raymond P. Canale, Numerical Methods for Engineers, McGraw-Hill. Jain, Iyengar & Jain, Numerical Methods for Scientific and Engineering Computation, New Age International. Balagurusamy E, Numerical Methods, Tata McGraw-Hill. Mathews J.H. & Fink K.D., Numerical Methods Using MATLAB Pearson Education 					

EME-304	S	oftware Applications for Engineering Problems				
Course category	:	Professional Electives (PE)				
Pre-requisite	:	NIL				
Subject						
Contact hours/week	:	Lecture: 2, Tutorial: 0, Practical: 4				
Number of Credits	:	4				
Course Assessment	se Assessment : Continuous assessment through tutorials, attendance, home assignments,					
methods	ethods quizzes, practical work, record, viva voce, one minor test, and one major theory					
		& practical examination				
Course Objectives	: To develop skills for using different software's for solving mechanical					
		engineering problems.				
Course Outcomes	:	Upon completion of this course, the student will demonstrate the abilit	y to:			
		1. Understand the concept of EES software for mechanical engi	neering			
		applications 2 Understand the concent of MATLAP software for machanical angin	aarina			
		2. Olderstand the concept of MATLAB software for mechanical engin	leering			
		3 Understand the concept of ANSYS software for mechanical engi	neering			
		applications	neering			
		4. To analyze the mechanical engineering problems using dif	fferent			
		software's.				
		5. Ability to analyze structural problems using ANSYS				
		6. Acquire ability to analyze fluid flow problems using EES				
Topics Covered						
UNIT-I:			6			
Introduction to EES a	nd	Its applications for Integration, Differential Equations and Thermal				
Problems			6			
UNIT-II			6			
Introduction to MATI	LAI	B and its applications for Engineering mechanics and Vibration				
problems.			6			
Introduction to ANSVS	· W	orkhanch Types of analysis that can be done using ANSVS	0			
	, vv	orkbenen, Types of analysis that can be done using ANSTS.				
UNIT-IV			6			
Structural Analysis, Th	erm	nal and Fluid Flow Analysis				
List of Practical:	• .					
1. To find out the	int	egration with Runga-Kutta method using EES				
2. To use the inte	gra.	hormal afficiency of yon or new or yold using ES				
3. To determine t	he i	liagram efficiency of impulse steam turbing using EES.				
5 To write a MA	TI	AB program to determine the magnitude and direction of the resultant	of 3-			
coplanar force	5.	The program to determine the magintude and direction of the resultant	015			
6. To write a MA	ΓLA	AB script for plotting the non-dimensional response magnitude for a system	m with			
harmonically r	nov	ring base				
7. To Find the det	lec	tion of simply supported beams using ANSYS				
8. To Find the det	flec	tion of cantilever beams using ANSYS				
9. To find out the	vel	ocity and pressure variations in pipe flow using ANSYS.				
10. 10 perform and	ilys	sis on duct flow using AINSYS				
1 MATIAD. A.	nce Int	8: roduction with Applications by Dag V Dukkingti Now Accustometics	1 Dyt			
I. MAILAD: An	1111	Toduction with Applications by Kao v Dukkipati New Age Internationa	ιτνί			
2. Getting Started	l wi	th MATLAB: A Quick Introduction for Scientists & Engineers by Rud	ra			
Pratan. Oxford	: E	dition (1 January 2010)				
3. ANSYS Manua	, L ıl	(, _, _ _, _ _, , , , , , , , , , ,				
4. EES Manual						

EME-504	EME-504 Computational Modeling and Simulation									
Course catego	ory	:	Professional Electives							
Pre-requisite Subject		:	NIL							
Contact hours/week		:	Lecture: 3, Tutorial: 0, Practical: 2							
Number of C	redits	:	4							
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assignment	nents,						
Methods			quizzes, practical work, record, viva voce, one minor test, and one	major						
			theory & practical examination							
Course Outco	omes	:	The students are expected to be able to demonstrate the following know	ledge,						
			skills and attitudes after completing this course	-						
1. Understar	nding the tec	hni	ques of modelling							
2. Knowled	ge of differe	nt ty	ypes of simulation techniques.							
3. The know	ledge to sin	nula	te the models for optimum control by using software.							
4. The know	vledge of net	uroi	ns, the architecture of neural networks, knowledge representation, and lea	arning						
algorithm	IS.			e						
able to un	derstand the	e op	timizations and design of Systems.							
5. The mode	eling knowle	edge	e based on expert knowledge like: Fuzzy sets, Fuzzy models etc.							
	e	0								
Topics Cover	ed									
UNIT-I				9						
Introduction										
System, envir	ronment, in	put	and output variables, State variables; Static and Dynamic systems;							
Hierarchy of I	knowledge a	iboi	at a system and Modeling Strategy							
Physical Modeling										
Dimensions analysis, Dimensionless grouping of input and output variables of find empirical										
relations, sim	ilarity criter	ia a	nd their application to physical models.							
UNIT-II				9						
Modeling of S	System with	n Sti	ructure							
Review of co	nservation l	aws	s and the governing equation for heat, mass and momentum transfer,							
Deterministic	model-(a)	dist	ributed parameter models in terms of partial identification and their							
solutions and	(b) lumped									
parameter mo	odels in terr	ns	of differential and difference equations, state space model, transfer							
functions bloc	k diagram a	nd s	sub systems, stability of transfer functions, modeling for control							
UNIT-III				9						
Optimization	s and Desig	n o	f Systems							
Summary of g	radient-base	d te	chniques: Nontraditional optimization techniques (1) genetic Algorithm							
(GA)- coding	, GA operati	ions	s, elitism, Application using MATLAB:(ii) Simulated Annealing.							
Neural Netwo	ork Modelir	1g 0	f Systems only with Input-output Database: Neurons, architecture of							
neural network	ks, knowledg	ge r	epresentation, learning algorithm. Multilayer feed forward network and							
its back propagation learning algorithm, Application to complex engineering systems and strategy for										
Madeling Resad on Export Knowledge: Fuzzy acts Membership functions Fuzzy Information										
systems Expert Knowledge and Euzzy Models Design of Euzzy Controllers										
Simulation of Engineering Systems: Monte-Carlo simulation Simulation of continuous and										
discrete processes with suitable examples from engineering problems										
EXPERIMENTS										
Minimum five experiments are to be conducted from the following:										
1. Introductions to programming with MATLAB										
			. Incontractor to programming that the tractor							

- 2. Find the response of a lumped variable model expressed in terms of transfer function using MATLAB for input of (i) unit step function (ii) unit impact function and (iii) unit ramp function
- 3. Use of Simulink in MATLAB for engineering problems
- 4. Use of Neural Network in MATLAB for engineering problems
- 5. Use of FIS and ANFIS in MATLAB for engineering problems
- 6. Monte Carlo simulation

Books & References

- 1. Zeigler B.P. Praehofer. H. and Kim I.G. "Theory of modeling and simulation", 2 nd Edition. Academic press 2000
- 2. Ogata K " Modern control Engineering" 3 rd edition. Prentice hall of India 2001
- 3. Jang J.S.R. sun C.T and Mizutani E,, "Neuro-Fuzzy and soft Computing ", 3 rd edition, Prentice hall of India 2002
- 4. Shannon, R. E., "System Simulation: the Art and Science", Prentice Hall Inc. 1990
- 5. Pratab.R " Getting started with MATLAB" Oxford university Press 2009

EME-704	Optimization Techniques in Engineering				
Course category		:	Professional Electives (PE)		
Pre-requisite Subject		:	NIL		
Contact hours/week		:	Lecture: 3, Tutorial: 1, Practical: 0		
Number of Credits		:	4		
Course Assessment		:	Continuous assessment through tutorials, attendance, home assignment	nents,	
methods			quizzes, viva voce, one minor test and one major theory exam.		
Course Outcomes		:	The students are expected to be able to demonstrate the following knowl	ledge,	
			skills and attitudes after completing this course		
CO1: Comprehend the techniques and applications of Engineering optimization.					
CO2: Analyze characteristics of a general linear programming problem.					
CO3: Apply basic concepts of mathematics to formulate an optimization problem.					
CO4: Analyze various methods of solving the unconstrained minimization problem.					
CO5: Analyze and appreciate a variety of performance measures for various optimization problems.					
Topics Covered					
UNIT-I					
Transportation problems: Finding an initial basic feasible solution by Northwest Corner rule, Least					
Cost rule, Vogel's approximation method, Degeneracy, Optimality test, MODI method, Stepping					

stone method. Assignment problems: Hungarian method for solution of Assignment problems. Integer Programming: Branch and Bound algorithm for solution of integer programming problems. UNIT-II

 Non-linear programming: Introduction to non-linear programming. Unconstraint optimization:
 9

 Fibonacci and Golden Section Search method. Constrained optimization with equality constraint:
 9

 Lagrange multiplier, Projected gradient method. Constrained optimization with inequality constraint:
 8

 Kuhn-Tucker condition, Quadratic programming.
 9

UNIT-III

Non-linear programming: Introduction to non-linear programming. Unconstraint optimization:9Fibonacci and Golden Section Search method. Constrained optimization with equality constraint:9

Lagrange multiplier, Projected gradient method. Constrained optimization with inequality constraint: Kuhn-Tucker condition, Quadratic programming

UNIT-IV

Queuing models: General characteristics, Markovian queuing model, M/M/1 model, Limited queue capacity, multiple server, Finite sources, Queue discipline.

9

Books & References

- 1. Operations Research- Principle and Practice, A. Ravindran, D. T. Philips, J. Solberg,
- 2. Second edition, Wiley India Pvt Ltd.
- 3. Operation Research, Prabhakar Pai ,Oxford University Press
- 4. Optimization for Engineering Design, Kalyanmoy Deb, PHI Learning Pvt Ltd.
- 5. Operations Research, H.A.Taha, A.M. Natarajan, P. Balasubramanie, A. Tamilarasi,
- 6. Pearson Education, Eighth Edition.
- 7. Engineering Optimization, S S Rao, New Age International Pvt Ltd, 2003.
- 8. Linear and Non-linear Optimization, Stephen G. Nash, A. Sofer, McGraw
- 9. Hill, 2nd Edition.
- 10. Engineering Optimization, A.Ravindran, K.M. Ragsdell, G.V. Reklaitis, Wiley India Pvt. Ltd, Second edition.
- 11. Operations Research, F.S.Hiller, G.J.Lieberman, Tata McGraw Hill, Eighth Edition,
- 12. 2005.
- 13. Operations Research, P.K.Gupta, D.S.Hira, S.Chand and Company Ltd, 2014.

EME- 904	Finite Element Methods in Engineering					
Course category		:	Professional Elective (PE)			
Pre-requisite Subject		:	NIL			
Contact hour	s/week	:	Lecture: 3, Tutorial: 1, Practical: 0			
Number of C	redits	:	4			
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assign	nments,		
methods			quizzes, practical work, record, viva voce, one minor test, and one	major		
			theory & practical examination			
Course Outco	omes	:	The students are expected to be able to demonstrate the following know	vledge,		
			skills and attitudes after completing this course			
1. Elabo	rate the fund	lam	nental theory of the FEA method			
2. Devel	op the gover	rnin	g FE equations for systems governed by partial differential equations			
3. Formulate with Rayleigh-Ritz and Galerkin Method						
4. Const	4. Construct the finite element models for structural applications like truss and beam					
5. Apply the FE method for heat transfer problems						
6. Outlin	ne the applic	atio	on and use of the FE method to solve various engineering problems			
Topics Cover	ed					
UNIT-I						
Introduction	to Finite F	Eler	nent Analysis: Basic Concepts, applicability and applications, basic	9		
equations of solid mechanics, boundary and initial conditions, Euler-Lagrange equation,						
Generalization of finite element concepts.						
Discretization, Interpolation models, weighted residual and variational approaches, the Principle of						
minimum potential energy, and virtual work.						
UNIT-II						
Element types- Line element (bar, truss, beam, and frame element), Plane elements- Triangular,						
rectangular, quadrilateral, sector, Solid elements – tetrahedron and hexahedron.						

Curved and isoperimetric elements, coordinate systems, and numerical integration, Mesh generation.						
UNIT-III						
One-dimensional finite element analysis: bar element, beam element, frame element - Heat transfer						
problems.						
UNIT-IV						
Two-dimensional finite element analysis.						
Additional Applications of FEM: Finite Elements for Elastic Stability, Finite Elements in Fluid						
Mechanics, Dynamic Analysis						
Books & References						
1. J. N. Reddy, An introduction to the Finite Element Method, 3rd edition, McGraw-Hill, 2006.						
2. C.S. Krishnamoorty, Finite Element Analysis, Tata McGraw-Hill						
3. David V. Hutton, Fundamentals of Finite Element Analysis, McGraw Hill D. Maity,						
4. Erik G. Thompson, Introduction to the Finite Element Method: Theory, Programming and						
Applications, John Wiley						
5. K. J.Bathe, Finite Element Procedures, Prentice-Hall of India, New Delhi, India						