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Preface

Our aim in writing this book has been to produce a short introduction to
quantum field theory, suitable for beginning research students in theoretical
and experimental physics. The main objectives are: (i) to explain the basic
physics and formalism of quantum field theory, (ii) to make the reader fully
proficient in perturbation theory calculations using Feynman diagrams, and
(i) to introduce the reader to gauge theories which are playing such a central
role in elementary particle physics.

The theory has been applied to two areas. The beginning parts of the book
deal with quantum electrodynamics (QED) where quantum field theory had
its early triumphs. The last four chapters, on weak interactions, introduce non-
Abelian gauge groups, spontaneous symmetry breaking and the Higgs
mechanism, culminating in the Weinberg-Salam standard electro-weak
theory. For reasons of space, we have limited ourselves to purely leptonic
processes, but this theory is equally successful when extended to include
hadrons. The recent observations of the W* and Z° bosons, with the
predicted masses, lend further support to this theory, and there is every hope
that it is the fundamental theory of electro-weak interactions.

The introductory nature of this book and the desire to keep it reasonably
short have influenced both the level of treatment and the selection of material.
We have formulated quantum field theory in terms of non-commuting
operators, as this approach should be familiar to the reader from non-
relativistic quantum mechanics and it brings out most clearly the physical
meaning of the formalism in terms of particle creation and annihilation
operators. We have only developed the formalism to the level we require in
the applications. These concentrate primarily on calculations in lowest order
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of perturbation theory. The techniques for obtaining cross-sections, decay
rates, and spin and polarization sums have been developed in detail and
applied to a variety of processes, many of them of interest in current research
on electro-weak interactions. After studying this material, the reader should
be able to tackle confidently any process in lowest order.

Our treatment of renormalization and radiative corrections is much less
complete. We have explained the general concepts of regularization and
renormalization. For QED we have shown in some detail how to calculate
the lowest-order radiative corrections, using dimensional regularization as
well as the older cut-off techniques. The infra-red divergence and its
connection with radiative corrections have similarly been discussed in lowest
order only. The scope of this book precludes a serious study of higher-order
corrections in QED and of the renormalization of the electro-weak theory.
For the latter, the Feynman path integral formulation of quantum field
theory seems almost essential. Regretfully, we were not able to provide a
short and simple treatment of this topic.

This book arose out of lectures which both of us have given over many
years. We have greatly benefited from discussions with students and
colleagues, some of whom have read parts of the manuscript. We would like
to thank all of them for their help, and particularly Sandy Donnachie who
encouraged us to embark on this collaboration.

January 1984 FraNZ MANDL
GRAHAM SHAW






In this book we have always taken

e>0

so that the charge of the electron is (—e).




CHAPTER 1

Photons and the electromagnetic
field

11 EPARTICLES AND FIELDS |

The concept of photons as the quanta of the electromagnetic field dates back
to the beginning of this century. In order to explain the spectrum of black-
body radiation Planck, in 1900, postulated that the process of emission and
absorption of radiation by atoms occurs dlscontmuously in quanta. Einstein
by 1905 had arrived at a more drastic interpretation. From a statistical
analysis of the Planck radiation law and from the energetics of the
photoelectric effect he concluded that it was not merely the atomic
mechanism of emission and absorption of radiation which is quantized, but
that electromagnetic radiation itself consists of photons. The Compton effect
confirmed this interpretation.

The foundations of a systematic quantum theory of fields were laid by
Dirac in 1927 in his famous paper on ‘The Quantum Theory of the Emission
and Absorption of Radiation’. From the quantization of the electromagnetic
field one is naturally led to the quantization of any classical field, the quanta
of the field being particles with well-defined properties. The interactions
between these particles is brought about by other fields whose quanta are
other particles. For example, we can think of the interaction between
clectrically charged particles, such as electrons and positrons, as being
brought about by the electromagnetic field or as due to an exchange of
photons. The electrons and positrons themselves can be thought of as the
quanta of an electron- positron field. An important reason for quantizing
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such particle fields is to allow for the possibility that the number of particles
changes as, for example, in the creation or annihilation of electron—positron
pairs.

These and other processes of course only occur through the interactions
of fields. The solution of the equations of the quantized interacting fields is
extremely difficult. If the interaction is sufficiently weak, one can employ
perturbation theory. This has been outstandingly successful in quantum
electrodynamics, where complete agreement exists between theory and
experiment to an incredibly high degree of accuracy. More. recently,
perturbation theory has also very successfully been applied to weak
interactions.

The most important modern perturbation-theoretic technique employs
Feynman diagrams which are also extremely useful in many areas other than
relativistic quantum field theory. We shall later develop the Feynman
diagram technique and apply it to electromagnetic and weak interactions. For
this a Lorentz—covariant formulation will be essential.

In this introductory chapter we employ a simpler non-covariant approach
which suffices for many applications and brings out many of the ideas of
field quantization. We shall consider the important case of electrodynamics
for which a complete classical theory—Maxwell’s—exists. As quantum
electrodynamics will be re-derived later, we shall in this chapter at times rely
on plausibility arguments rather than fully justify all steps.

1.2 THE ELECTROMAGNETIC FIELD IN THE ABSENCE OF
CHARGES
1.1 |The classical field|

Classical electromagnetic theory is summed up in Maxwell’s equations. In the
presence of a charge density p(x, t) and a current density j(x, t), the electric
and magnetic fields E and B satisfy the equations

V-E=p (1.1a)
1, 10E

VAB=- .
AB=-j+ (1.1b)
V-B=0 (L.1c)

1B

VAE= — .

A — (1.1d)

where, as throughout this book, rationalized Gaussian (c.g.s.) units are being
used.}

{ They are also called rationalized Lorentz-Heaviside units. In these units the fine structure
constant is given by o = e?/(4nhc) ~1/137, whereas in unrationalized Gaussian units
a = el /hc, i.e. e = e,/ (7). Correspondingly for the fields E = E,, ../ /(4n), etc.
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From the second pair of Maxwell’s equations [(t.1c) and (1.1d)] follows
the existence of scalar and vector potentials ¢(x, t) and A(x, t), defined by

B=VAA E=-Vp——— (12)

Egs. (1.2) do not determine the potentials uniquely, since for an arbitrary
function f(x, t) the transformation

¢—>¢’=¢+%g—j;, A->A'=A-YVf (1.3)
leaves the fields E and B unaltered. The transformation (1.3) is known as a
gauge transformation of the second kind. Since all-observable quantities can
be expressed in terms of E and B, it is a fundamental requirement of any
theory formulated in terms of potentials that it is gauge-invariant, i.e. that the
predictions for observable quantities are invariant under such gauge
transformations.

Expressed in terms of the potentials, the second pair of Maxwell’s
equations [(1.1c) and (1.1d)] are satisfied automatically, while the first pair
[(1.1a) and (1.1b)] become

0 /10
—V2¢ —%%(V-A) =O¢ —1—<1—¢+V-A> =p  (l4a)

cot\c ot
0
DA+V<1L”+V-A>=15 (1.4b)
c ot c
where
1 82
D EF—?—VZ. (1'5)

We now go on to consider the case of the free field, i.e. the absence of
charges and currents: p =0, j = 0. We can then choose a gauge for the
potentials such that

V-A=0. (1.6)

The condition (1.6) defines the Coulomb or radiation gauge. A vector field
with vanishing divergence, i.e. satisfying Eq. (1.6), is called a transverse field,
since for a wave

A(x, t) = Ag ei®x—en
Eq. (1.6) gives
k'A=0, (1.7)

i.e. A is perpendicular to the direction of propagation k of the wave. In the
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Coulomb gauge, the vector potential is a transverse vector. In this chapter we
shall be employing the Coulomb gauge.

In the absence of charges, Eq. (1.4a) now becomes V?¢ = 0 with the
solution, which vanishes at infinity, ¢ = 0. Hence Eq. (1.4b) reduces to the
wave equation

A =0. (1.8)

The corresponding electric and magnetic fields are, from Eqgs. (1.2), given
by
1 6A

B=VAA E=—— 1.9

A A, T (1.9)

and, like A, are transverse fields. The solutions of Eq. (1.8) are the transverse

electromagnetic waves in free space. These waves are often called the
radiation field. Its energy is given by

Hea =%f(E2 + B?) dx. (1.10)

In order to quantize the theory we shall want to introduce canonically con-
jugate coordinates (like x and p, in non-relativistic quantum mechanics) for
each degree of freedom and subject these to commutation relations. At a given
instant of time t, the vector potential A must be specified at every point x in
space. Looked at from this view point, the electromagnetic field possesses a
continuous infinity of degrees of freedom. The problem can be simplified by
considering the radiation inside a large cubic enclosure, of side L and volume
V = L3, and imposing periodic boundary conditions on the vector potential A
at the surfaces of the cube. The vector potential can then be represented as a
Fourier series, i.e. it is specified by the denumerable set of Fourier expansion
coefficients, and we have obtained a description of the field in terms of an infi-
nite but denumerable number of degrees of freedom. The Fourier analysis
corresponds to finding the normal modes of the radiation field, each mode
being described independently of the others by a harmonic oscillator
equation. (All this is analogous to the Fourier analysis of a vibrating string.)
This will enable us to quantize the radiation field by taking over the
quantization of the harmonic oscillator from non-relativistic quantum
mechanics.

With the periodic boundary conditions

A, y,z,t) = A(L,y,z, t), etc, (1.11)

the functions

1kx —
\/Ve'(k) e r=1,2, - (L12)
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form a complcte set of transverse orthonormal vector ficlds. Here the wave
vectors k must be of the form

2
k=T"(n1,n2, ny),  nmpuny=0, %1, ..., (1.13)

so that the fields (1.12) satisfy the periodicity conditions (1.11). &, (k) and €,(k)
are two mutually perpendicular real unit vectors which are also orthogonal
to k:

£.(k) - g4k) = d,s, gk) k=0, rs=1,2. (14)

The last of these conditions ensures that the fields (1.12) are transverse,
satisfying the Coulomb gauge condition (1.6) and (1.7).}
We can now expand the vector potential A(x, t) as a Fourier series
hc?

1/2
A(x, t) = ; Z (2 Vwk> ek)[a (K, t) e + ark, 1) e7**], (1.15)

where w, = c[k|. The summations with respect to r and k are over both
polarization states r = 1, 2 (for each k) and over all allowed momenta k. The
factor to the left of g.(k) has been introduced for later convenience only. The
form of the series (1.15) ensures that the vector potential is real: A = A*. Eq.
(1.15) is an expansion of A(x, t) at each instant of time ¢. The time dependence
of the Fourier expansion coefficients follows since A must satisfy the wave
equation (1.8). Substituting Eq. (1.15) in (1.8) and projecting out individual
amplitudes, one obtains
2

66? ak, t) = —wla/k,t). (1.16)

These are the harmonic oscillator equations of the normal modes of the
radiation field. It will prove convenient to take their solutions in the form

a(k, t) = a,(k) exp (—iw,t), (1.17)

where the a,(k) are initial amplitudes at time ¢t = 0.

Eq. (1.15) for the vector potential, with Eq. (1.17) and its complex
conjugate substituted for the amplitudes a, and a¥, represents our final result
for the classical theory. We can express the energy of the radiation field, Eq.
(1.10), in terms of the amplitudes by substituting Eqs. (1.9) and (1.15) in (1.10)
and carrying out the integration over the volume V of the enclosure. In this way
one obtains

Hua =YY hoyafk)a, (k). (1.18)
k r

! With this choice of g,(k), Egs. (1.12) represent finearly polarized fields. By taking appropriate
complex linear combinations of €y and €, one obtains circular or, in general, elliptic polarization.
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Note that this is independent of time, as expected in the absence of charges
and currents; we could equally have written the time-dependent amplitudes
(1.17) instead, since the time dependence of a, and of a}¥ cancels.

As already stated, we shall quantize the radiation field by quantizing the
individual harmonic oscillator modes. As the interpretation of the quantized
field theory in terms of photons is intimately connected with the quantum
treatment of the harmonic oscillator, we shall summarize the latter.

1.2.2 Harmonic oscillator

The harmonic oscillator Hamiltonian {s, in an obvious notation,
2

14
Hosc = 2—m + %mwzqz,

with g and p satisfying the commutation relation [g, p] = th. We introduce the
operators
a

1 .
a*} = Ghma) (mwq + ip).

These satisfy the commutation relation

[a,a'] =1, (1.19)
and the Hamiltonian expressed in terms of a and a' becomes:
H,. = thw(a'a + aa') = hw(a’a + 3). (1.20)

This is essentially the operator
N = d'a, (1.21)
which is positive definite, i.e. for any state |¥)
(PINYY = (Platal¥) = (a¥|a¥?) = 0.
Hence, N possesses a lowest non-negative eigenvalue
oo = 0.
It follows from the eigenvalue equation
Nla)> = ajod
and Eq. (1.19) that
Naje) = (2 — Dale),  Na'la) = (a + Da'la), (1.22)

ie. ala) and a'le) are eigenfunctions of N belonging to the eigenvalues
(¢ — 1) and (a + 1), respectively. Since o, is the lowest eigenvalue we must
have

alae) = 0, (1.23)
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and since

a*aioc()) = %oloto)

Eq. (1.23) implies o = 0. It follows from Egs. (1.19) and (1.22) that the
eigenvalues of N are the integers n =0, 1, 2,..., and that if (njn) = 1, then
the states {n + 1), defined by

any =n?n— 1>, d'lnd) =@+ DY3n + 1), (1.24)

are also normed to unity. If (0/0> = 1, the normed eigenfunctions of N are
Hyn

=y n=012.. (1.25)

N
These are also the eigenfunctions of the harmonic oscillator Hamiltonian
(1.20) with the energy eigenvalues

E, = ho(n + 1), n=012.... (1.26)

The operators a and a' are called lowering and raising operators because of
the properties (1.24). We shall see that in the quantized field theory |n) repre-
sents a state with n quanta. The operator a (changing |n) into [n — 1)) will
annihilate a quantum; similarly, a' will create a quantum,

So far we have considered one instant of time, say t = 0. We now discuss
the equations of motion in the Heisenberg picture In this picture, the
operators are functions of time. In particular

da(t)

_[ (t) Hosc] (127)
with the tnitial condition a(O) = g, the lowering operator considered so far.
Since H,. is time-independent, and a(t) and a'(t) satisfy the same
commutation relation (1.19) as a and d, the Heisenberg equation of motion
(1.27) reduces to

da(t) .
Fri —iwa(t)
with the solution
at) = ae™ (1.28)

123 iThe quantized radiation field|
The harmonic oscillator results we have derived can at once be applied to the

radiation field. Its Hamiltonian, Eq. (1.18), is a superposition_of independent

! See the appendix to this chapter (Section 1.5) for a concise development of the Schrodinger,
Heisenberg and interaction pictures.
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harmonic oscillator Hamlltomans (1 20) one for each mode of the radiation

since the a, and a* are classncal amplltudes] We therefore 1ntroduce
commutation relations analogous to Eq. (1.19)

[ar(k)’ a:(k’)] = 5rs 5kk’ }
1.29
[, (K), a,(k')] = [a}(k), al(k)] = 0 (129
and write the Hamiltonian (1.18) as
Hrad = E Z hwk(aI(k)ar(k) + %) (130)

The operators
N,(k) = al(k)a,(k)
then have eigenvalues n.(k) =0, 1,2,..., and eigenfunctions of the form
(1.25)
[ai(k)]™®
vk

The eigenfunctions of the radiation Hamiltonian (1.30) are products of such
states, i.e.

n.(k)) = 0. (1.31)

l..m(k)...) = H [In.(k)>, (1.32)

ki i

with energy

L2 han(ni(k) + ). (1.33)

The interpretation of these equations is a straightforward generalization
from one harmonic oscillator to a superposition of independent oscillators,
one for each radiation mode (k, r). a,(k) operating on the state (1.32) will
reduce the occupation number n,(k) of the mode (k, r) by unity, leaving all
other occupation numbers unaltered, i.e. from Eq. (1.24):

a,K)... n(K)...> = [m(K)]*2)..., m(k) — 1,...>. (1.34)

Correspondingly the energy (1.33) is reduced by hw, = hclk|. We interpret
a,(k) as an annihilation (or destruction or absorption) operator which
annihilates one photon in the mode (k, r), i.e. with momentum hk, energy hw,
and linear polarization vector g.(k). Similarly af(k) is interpreted as a
creation operator of such a photon. The assertion that a,(k) and al(k) are
absorption and creation operators of photons with momentum #k can be
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Justilied by caleulating the momentum ol the radiation field. We shall sce
later that the momentum operator of the field is given by

P=Y>5 hk(N,(k) + 1), (1.35)
k r
which leads to the above interpretation. We shall not consider the more

intricate problem of the angular momentum of the photons but only mention
that circular polarlzatlon states obtained by forming linear comblnatlons

[&1(k) + iex(k)], [e1(k) — iga(k)], (136)

7 7
are more appropriate for this. Remembering that (g, (k), €,(k), k) form a right-
handed Cartesian coordinate system we see that these two combinations
correspond to angular momentum +#4 in the direction k (analogous to the
properties of the spherical harmonics Y1), i.e. they represent right- and left-
circular polarization: the photon behaves like a particle of spin 1. The third
spin component is of course missing because of the transverse nature of the
photon ﬁeid R

The state of lowest energy of the radiation field is the vacuum state [0 in
which all occupation numbers n(k) are zero. According to Egs. (1.30) or
(1 33), this state has the energy DD hwk This is is  an infinite constant which

zero_)of the ene energy scale to “coincide with the vacuum state |0> This
corresponds to replacing Eq. (1.30) by

-
l

Hug = Y Y hanai(k)a, (k). (137)
| kK r
[The ‘extra’ term in Eq. (1.35) for the momentum will similarly be dropped. It
actually vanishes in any case due to symmetry in the k summation.]

The representation (1.32) in which states are specified by the occupation
numbers n,(k) is called the number_representation. It is of great practical
importance in calculating transitions (possibly via intermediate states)
between initial and final states containing definite numbers of photons with
well-defined properties. These ideas are of course not restricted to photons
but apply generally to the particles of quantized fields. We shall have to modify
the formalism in one respect. We have seen that the photon occupation
numbers n,(k) can assume all values 0, 1, 2, .... Thus, photons satisfy Bose—
Einstein statistics.; They are bosonﬂ So a modlﬁcatlon will be required to
describe partlcles obeymg Fermi-Dirac statistics ( fermions), such as electrons
or muons, for which the occupation numbers are restricted to the values 0
and 1.

We have quantlzed the electromagnetic field by replacing the classical
amplitudes g, and a* in the vector potential (1.15) by operators, so > that the
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vector potential and the electric and magnetic fields become operators. In
particular, the vector potential (1.15) becomes, in the Heisenberg picture [cf.
Eqgs. (1.28) and (1.17)], the time-dependent operator

AX, ) =AT(x, 1) + A" (x, 1), (1.38a)
with
2

A“‘”=§Z<;;)mammmn““Wh (1.38b)

A-(x, 1) =;;<

The operator A* contains only absorption operators, A~ only creation
operators. A* and A~ are called the positive and negative frequency parts of
A} The operators for E(x, t) and B(x, t) follow from Egs. (1.9). There is an
important difference between a_quantized field theory and non-relativistic
quantum mechanics. In the former it is the amplitudes (and hence the fields)
which are operators and the position and time coordinates (x, t) are ordinary
numbers, whereas in the latter the position coordinates (but not the time) are
operators.

Finally, we note that a state with a definite number v of photons (i.e. an
eigenstate of the total photon number operator N = 3", >, N,(k)) cannot be a
classical field, not even for v — 0. This is a consequence of the fact that E,
like A, is linear in the creation and absorption operators. Hence the
expectation value of E in such a state vanishes. It is possible to form so-called
coherent states |c> for which <{c|E|c) represents a transverse wave and for
which the relative fluctuation AE/{c|E|c} tends to zero as the number of
photons in the state, {c|N|c), tends to infinity, i.e. in this limit the state |c)
goes over into a classical state of a well-defined field.}

he? \1/? .
Y% ) e (k)aj(k) e itkx— o), (1.38¢c)
Wy

O
1.3 THE ELECTRIC DIPOLE INTERACTION

In the last section we quantized the radiation field. Since the occupation
number operators a/(k)a,(k) commute with the radiation Hamiltonian (1.37),
the occupation numbers n,(k) are constants of the motion for the free field.
For anything ‘to happen’ requires interactions with charges and currents
so that photons can be absorbed, emitted or scattered.

The complete description of the interaction of a system of charges (for
example an atom or a nucleus) with an electromagnetic field is very
complicated. In this section we shall consider the simpler and in practice

* This is like in non-relativistic quantum mechanics where a time-dependence e™'* with
w = E/h > 0 corresponds to a positive energy, i.e. a positive frequency.

% For a discussion of coherent states see R. Loudon, The Quantum Theory of Light, Clarendon
Press, Oxford, 1973, pp. 148-153. See also Problem 1.1.
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important special case of the interaction occurring via the electric dipole
moment of the system of charges. The more complete (but still non-
covariant) treatment of Section 1.4 will justify some of the points asserted in
this section.

We shall consider a system of N charges e, e,,...,exy which can be
described non-relativistically, i.e. the position of e;, i = 1, ..., N, at time ¢ is
classically given by r; = ri(t). We consider transitions between definite initial
and final states of the system (e.g. between two states of an atom). The transi-
tions are brought about by the electric dipole interaction if two approxima-
tions are valid.

Firstly it is permissible to neglect the interactions with the magnetic field.

Secondly, one may neglect the spatial variation of the electric radiation
field, causing the transitions, across the system of charges (e.g. across the
atom). Under these conditions the electric field

1 0A(r, t
Er, ) = — 2400,

resulting from the transverse vector potential (1.38) of the radiation field (we
are again using the Coulomb gauge V- A = 0), can be calculated at one point
somewhere inside the system of charges, instead of at the position of each
charge.} Taking this point as the origin of coordinates r = 0, we obtain for
the interaction causing transitions the electric dipole interaction H, given
by

(1.39)

H = —D-E(0, 1) (1.40)

where the electric dipole moment is defined by
D= er. (141)

Transitions brought about by the interaction (1.40) in first-order perturba-
tion theory are called electric dipole transitions. Since E1 like A [Eq. (1.38)]
is linear in the photon absorption and creation operators, so is H,. It follows
that in electric dipole transitions one photon is emitted or absorbed. In the
next section it will be shown that the electric dipole approximation is valid
provided the wavelength 1 = 27/k of the radiation emitted or absorbed in the
transition is very large compared to the linear dimensions R of the system of
charges: 4 >» R. For example, for optical transitions in atoms, R is of the order
of 1 A and / lies in the range 4000-7500 A. Similarly, for gamma-rays emitted
by nuclei, R is of the order of a few fermis (1 f = 10~'% m) and since 1/27 =

! In Eq. (1.39) we have written Er, since we now also have the Coufomb interaction between
the charges which makes a contribution — V¢ to the electric field. [See Eqgs. (1.2) and (1.4a) and
Section [.4.)
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[197/(E in MeV)] f for a gamma-ray of E MeV, the electric dipole approxi-
mation is valid up to quite high gamma-ray energies.

If there are selection rules forbidding a transition in the electric dipole
approximation, it might still occur via the magnetic interactions or via parts
of the electric interactions which are neglected in the dipole approximation. It
may happen that a transition is strictly forbidden, i.e. cannot occur in first-
order perturbation theory even when the exact interaction is used as
perturbation instead of H; [Eq. (1.40)]. In such cases the transition can still
occur in higher orders of perturbation theory or, possibly, by some quite
different mechanism.*

Let us now consider in some detail the emission and absorption of
radiation in electric dipole transitions in atoms. The atom will make a
transition from an initial state |[A) to a final state |B) and the occupation
number of one photon state will change from n,(k) to n,(k) + 1. The initial
and final states of the system will be

14, n,(K)> = |4>In,(k))
1B, n,(k) + 1 = |B)In,(k) £ 1) } (1.42)

where the occupation numbers of the photon states which are not changed in
the transition are not shown. The dipole operator (1.41) now becomes:
D=—e)r=—ex, (1.43)
i
where the summation is over the atomic electrons and we have introduced

the abbreviation x. The transverse electric field E1(0, t) which occurs in the
interaction (1.40) is from Eqgs. (1.38)

1 0A0, ¢
Br0,0)= — o

. ha \M? . .
=1 ; )3 (W) e (k)[a(k) e — aj(k) e'M].

Let us consider radiative emission. The transition matrix element of the
interaction (1.40) between the states (1.42) then is given by

<Ba nr(k) + 1|HI|A5 nr(k)>

hCU 1/2 .
- (W) <n(K) + 1al()in (k)< Ble, (K)- DAY e

. hwk 172 1/2 ikt
=i(3p) [0+ 11%Blek)Dia) e (1.44)

where the last line follows from Eq. (1.24).

! For selection rules for radiative transitions in atoms, see H. A. Bethe and R. W. Jackiw,
Intermediate Quantum Mechanics, 2nd edn, Benjamin, New York, 1968, Chapter 11.
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The transition probability per unit time between initial and final states
(1.42) is given by time-dependent perturbation theory as

w= 2T B ) + 1HA, m (P S(ES — Ep— ha)  (149)

where E, and Ejpare the energies of the initial and final atomic states |4» and
|B).} The delta function ensures conservation of energy in the transition, i.e.
the emitted photon’s energy hw, must satisfy the Bohr frequency condition

w,= w=(E4— Ep)/h. (1.46)

The delta function is eliminated in the usual way from Eq. (1.45) by
integrating over a narrow group of final photon states. The number of
photon states in the interval (k, k + dk), all in the same polarization state
(El(k) or Ez(k)), is

vd’k Vk*dkdQ?
@n’ —  @n?
From Eqs. (1.44)—(1.47) we obtain the probability per unit time for an

atomic transition |A> — |B) with emission of a photon of wave vector in the
range (k, k + dk) and with polarization vector g,(k):

Vk? dk dQ 2n
WrdQ = J‘WT(S(EA - EB - hwk)

(1.47)

hw,
X (2—;> (n(k) + 1]I<Ble,(k)-D|4>>. (1.49)
If we perform the integration with respect to k (= w,/c) and substitute (1.43)
for D, the last expression reduces to

e?w® dQ
w, dQ = W [n,(k) + l]ler(k)'xBA|2 (150)

where xg, stands for the matrix element

Xp4 = (B|x|4) = (B| ) 1|4). (1.51)

! Time-dependent perturbation theory is, for example, developed in A. S. Davydov, Quantum
Mechanics, 2nd edn, Pergamon, Oxford, 1976, see Section 93 [Eq. (93.7)]; E. Merzbacher,
Quantum Mechanics, 2nd edn, Wiley, New York, 1970, see Section 18.8; L. I. Schiff, Quantum
Mechanics, 3rd edn, McGraw-Hill, New York, 1968, see Section 35.

*Since we are using a finite normalization volume ¥, we should be summing over a group
of allowed wave vectors k [see Eq. (1.13)]. For large ¥ (strictly ¥ — <o)

1 1
LS s '[ &k, (1.48)

k

‘The normalization volume ¥ must of course drop out of all physically significant quantities such
us transition rates etc.
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The most interesting feature of Eq. (1.50) is the occurrence of the factor
[n.(k) + 1]. n(k) is the occupation number of photons in the (k, r) mode
present initially, and thus the part of (1.50) proportional to n(k) represents
induced (or stimulated) emission, ie. radiation which results from the
radiation incident on the atom; classically, we can think of it as resulting from
the forced oscillations of the electrons, and this term can be produced from a
semiclassical theory of radiation.* However, even with no radiation present
initially (n(k) = 0), the transition probability (1.50) is different from zero.
This corresponds to the spontaneous emission of.radiation from an atom,
and this cannot be derived from a semiclassical theory of radiation.

Egs. (1.50) and (1.51) represent the basic result about emission of radiation
in electric dipole transitions, and we only briefly indicate some consequences.

To sum over the two polarization states for a given k, we note that &,(k),
£,(k) and k = k/|k| form an orthonormal coordinate system. Hence,

2
Zx |8r(k)'XBA|2 = Xpa'XB4 — (R'XBA)(R'XEA)

r=
= (xpa"X34)(1 — cos? 0)
= |xp,|* sin? 0,

where the last line but one defines the angle § which the complex vector xz,4
makes with k. Hence from Eq. (1.50)

2 e2w?

r; w, dQ = P dQ[n,(k) + 1]|xp 4% sin? 6. (1.52)

For spontaneous emission, the total transition probability per unit time is

obtained from the last equation, with n.(k) =0, by integrating over all
directions. Since

8
f sin? 0 dQ = _3"_
we obtain

2.3

e
Wiotal(4 = B) = Inhe® IXp4l2.

(1.53)

The life time 7 of an excited atomic state [4) is defined as the reciprocal of

the total transition probability per unit time to all possible final states |B, ),
(B3, ..., 1e.

% = Z Wiotai(4 — Bh). (1.54)

* See, for example, L. I. Schiff, Quantum Mechanics, 3rd edn, McGraw-Hill, New York, 1968,
Chapter 11, or Bethe and Jackiw, referred to earlier in this section, Chapter 10.
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In particular, if the state |[4) can decay to states with non-zero total angular
momentum, Eq. (1.54) must contain a summation over the corresponding
magnetic quantum numbers.

The selection rules for electric dipole transitions follow from the matrix
element (1.51). For example, since x is a vector, the states |4> and |B) must
have opposite parity and the total angular momentum quantum number J of
the atom and its z-component M must satisfy the selection rules

AJ =0, +1, not J=0->J=0, AM =0, +1.

The second selection rule (not J = 0 — J = 0) applies strictly to one-photon
processes, not only in the electric dipole approximation. It is a consequence of
the fact that there are no one-photon states with zero angular momentum.
To form such a state from the spin 1 of the photon and a unit of orbital
angular momentum requires all three components of the spin angular
momentum, but because of the transversality of the radiation field only two
of the spin components are available [compare Eq. (1.36)].

Finally, we note that very similar results hold for the absorption of radiation
in electric dipole transitions. The matrix element

<B’ nr(k) - IIHIIA, nr(k)>

corresponding to Eq. (1.44) now involves the factor [n(k)]'/? instead of
[n,(k) 4+ 172, Our final result for emission, Eq. (1.50), also holds for
absorption, with [n,(k) + 1] replaced by [n.(k)], dQ being the solid angle
defining the incident radiation, and the matrix element xp4, Eq. (1.51),
representing a transition from an atomic state |4 ) withenergy E, to astate |B)
with energy Eg > E,. Correspondingly the frequency w is defined by Aw =
Ez — E, instead of Eq. (1.46).

1.4 THE ELECTROMAGNETIC FIELD IN THE PRESENCE OF
CHARGES

After the special case of the electric dipole interaction, we now want to con-
sider the general interaction of moving charges and an electromagnetic field.
As this problem will later be treated in a relativistically covariant way, we shall
not give a rigorous complete derivation but rather stress the physical inter-
pretation. As in the last section, the motion of the charges will again be
described non-relativistically. In Section 1.4.1 we shall deal with the
Hamiltonian formulation of the classical theory. This will enable us very
casily to go over to the quantized theory in Section 1.4.2. In Sections 1.4.3
and 1.44 we shall illustrate the application of the theory for radiative
transitions and Thomson scattering.



16 Photons and the cectromagnette lield  Chap.

14.1 C(lassical electrodynamics

We would expect the Hamiltonian of a system of moving charges, such as an
atom, in an electromagnetic field to consist of three parts: a part referring to
matter (i.e. the charges), a part referring to the electromagnetic field, and a
part describing the interaction between matter and field.

For a system of point masses m;, i = 1,..., N, with charges e¢; and position
coordinates r;, the Hamiltonian is

2
Hm=;%+ He (1.55a)

where Hc¢ is the Coulomb interaction

—1 i€
=3 _ 1.
He =3 ‘Z; pr— (1.55b)
(i#j)

and p; = m; dr;/d¢ is the kinetic momentum of the ith particle. This is the
usual Hamiltonian of atomic physics, for example.

The electromagnetic field in interaction with charges is described by
Maxwell’s equations [Egs. (1.1)]. We continue to use the Coulomb gauge,
V:A =0, so that the clectric field (1.2) decomposes into transverse and
longitudinal fields

E=Er+ E,,
where
10A
ET— —'EE’ EL-— —V¢

(A longitudinal field is defined by the condition V A Ep = 0.) The magnetic
ficld is given by B=V A A.
The total energy of the electromagnetic field

%f(Ez + B?) d3x
can be written

%f(E%+B2)d3x+%fEfd3x.

The last integral can be trqnsformcd, using Poisson’s equation V¢ = —p,
into

%JE{ &x = %j__-_”("’ LD (1.56)

4nix — X'|
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I'hus the energy associated with the longitudinal field is the energy of the
instantancous clectrostatic interaction between the charges. With

p(x, 1) = e; 6(x — 1{(t)
k. (1.56) reduces to

= H, (1.57)

where in the last line we have dropped the infinite self-energy which occurs
for point charges. The term H¢ has alrcady been included in the
Hamiltonian H,,, Egs. (1.55), so we must take as additional energy of the
clectromagnetic field that of the transverse radiation field

Hrad = % J‘(E% + Bz) dSX. (158)
Egs. (1.55) allow for the instantaneous Coulomb interaction of charges. To

allow for the interaction of moving charges with an electromagnetic field, one
must replace the matter-Hamiltonian (1.55a) by

1 ; 2
Ho=Y (pi - %A) + He (1.59)

T 2m;

where A; = A(r;, t) denotes the vector potential at'the position r; of the charge
¢; at time t. In Eq. (1.59) p; is the momentum coordinate canonically
conjugate to the position coordinate r;, in the sense of Lagrangian mechanics,
and it is related to the velocity v; = dr;/dt of the ith particle by

€;
pi = myv; + — Ai.
c
It is only for A = 0 that this conjugate momentum reduces to the kinetic

momentum m;v;. The justification for the form (1.59) for H/, is that it gives the
correct equations of motion for the charges (see Problem 1.2):

Fde

where E; and B; are the electric and magnetic fields at the instantaneous
position of the ith charge.*

m 3V e, [Ei + % A B{I, (1.60)

' For the Lagrangian and Hamiltonian formulations of mechanics which are here used see, for
example, H. Goldstein, Classical Mechanics, 2nd edn, Addison-Wesley, Reading, Mass., 1980, in
particular pp. 21 23 and 346.
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We can regroup the terms in Eq. (1.59) as
H,, =H, + H, (1.61)

where H,, the interaction Hamiltonian of matter and field, is given by

2

e e’
H = L i.Ai °P; : A2
1 Z{ Ymec (p +A;p) + I N }

i T

=2{_iA, Lo A.z}. (1.62)
; me P: 2mic? ’
In the quantum theory p;, the momentum canonically conjugate to r;, will
become the operator —ihV;. Nevertheless, the replacement of p;*A; by A;*p;
in the second line of Eq. (1.62) is justified by our gauge condition V;-A; = 0.
Eq. (1.62) represents the general interaction of moving charges in an
electromagnetic field (apart from Hc). It does not include the interaction of
the magnetic moments, such as that due to the spin of the electron, with
magnetic fields.

Combining the above results (1.55), (1.58), (1.59) and (1.62), we obtain
for the complete Hamiltonian

H=H;n + Hpag = Hn + Hpag + Hy. - (163)

Just as this Hamiltonian leads to the correct equations of motion (1.60) for
charges, so it also leads to the correct field equations (1.4), with V-A = 0, for
the potentials.*

14.2 Quantum electrodynamics

The quantization of the system described by the Hamiltonian (1.63) is carried
out by subjecting the particles’ coordinates r; and canonically conjugate
momenta p; to the usual commutation relations (e.g. in the coordinate
representation p; — —ihV;), and quantizing the radiation field as in Section
1.2.3. The longitudinal electric field E; does not provide any additional
degrees of freedom, being completely determined via the first Maxwell
equation V*E, = p by the charges.

The interaction Hy in Eq. (1.63) is usually treated as a perturbation which
causes transitions between the states of the non-interacting Hamiltonian

Hy = H,, + H,ag. (1.64)
The eigenstates of H, are again of the form
|4, ...n(K)...>=|A)...n(k)... D,
with |[A) and |...n(Kk) ... > eigenstates of H,, and H,,q.

¥ See W. Heitler, The Quantum Theory of Radiation, 3rd edn, Clarendon Press, Oxford, 1954,
pp. 48-50.
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Compared with the clectric dipolc interaction (1.40), the interaction (1.62)
differs in that it contains a term quadratic in the vector potential. This results
i two-photon processes in first-order perturbation theory (i.e. emission or
ibsorption of two photons or scattering). In addition, the first term in (1.62)
contains magnetic interactions and higher-order effects due to the spatial
variation of A(x,t) which are absent from the electric dipole interaction
(1.40). These aspects are illustrated in the applications to radiative transitions
and Thomson scattering which follow.

1.4.3 Radiative transitions in atoms

We consider transitions between two states of an atom with emission or
ibsorption of one photon. This problem was treated in Section 1.3 in the
clectric dipole approximation but now we shall use the interaction (1.62).

We shall consider the emission process between the initial and final states
(1.42). Using the expansion (1.38) of the vector potential, we obtain the matrix
clement for this transition [which results from the term linear in A in Eq.
(1.62)]

(B, n/(k) + 1|H,|4, n,(k))

)1/2 (k) + 11'/2¢Ble(k) - Y, e 7 T pijA) eV
(1.65)

e
T m\2Vo,

Using this matrix element, one calculates the transition probability per unit
time as in Section 1.3. Instead of Eqs. (1.50) and (1.51), one obtains:

2 2
v o0 &) (Bl T e pldy| . (166)

Fymw Py [n(k) + 1]

dQ =
Yr 8n’m

These results go over into the electric dipole approximation if in the matrix
clements in Egs. (1.65) and (1.66) we can approximate the exponential
functions by unity:

ey, (1.67)

This is justified provided the wavelength A = 2n/k of the radiation emitted in
the transition is very large compared to the linear dimensions R of the system
of charges (in our case, of the atom): 4 » R. The atomic wavefunctions |4}
ind |B) restrict the effective values of r; to r; < R, so that k*r; < kR « 1. We
saw in Section 1.3 that this inequality is generously satisfied for optical
utomic transitions, From the equation of motion ih#; = [r;, H] and Eq. (1.46)

{B|p|A) = m{B|tjA) = —imw{Bjr|A).
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Hence, in the approximation (1.67), Eqs. (1.65) and (1.66) reduce to the
electric dipole form, Eqgs. (1.44) and (1.50).

If selection rules forbid the transition |4} to |B) via the electric dipole
interaction, it may in general still occur via higher terms in the expansion of
the exponentials

e k=1 —iker; + . "

With the second term, the expression within the modulus sign in Eq. (1.66)
becomes

3 3
e.(k)" (B Z (—ik-r)p;lA) = —i Zl 1121 &rq(K)ky<( B Z Fig Pial AD,

where «, § (=1, 2, 3) label the Cartesian components of the vectors ¢,, k, r;
and p;. The matrix element can be written as the sum of an antisymmetric and
a symmetric second-rank tensor

(B Z ripPialA) =% {(Bl Z (rip Pia — riuDip)l A + (B Z (rip Pia + riapi[i)lA>}'

The first term contains the antisymmetric angular momentum operator and
corresponds to the magnetic dipole interaction. (In practice this must be
augmented by the spin part.) The symmetric term corresponds to the electric
quadrupole interaction. The parity and angular momentum selection rules
for the transitions brought about by these matrix elements are easily
determined from their forms. We obtain in this way an expansion into electric
and magnetic multipoles, i.e. photons of definite parity and angular
momentum. As usual, a better procedure for such an expansion, except in the
simplest cases, is to use spherical rather than Cartesian coordinates.}

The result (1.66) can again be adapted to the case of absorption of
radiation by replacing the factor [n(k) + 1] by n,(k) and the appropriate
reinterpretation of the matrix element, etc.

14.4 Thomson scattering

As a second illustration we consider Thomson scattering, i.e. the scattering of
photons of energy Aw by atomic electrons, with hAw large compared to the
binding energies of the electrons, so that they can be considered as free
electrons, but Aw very small compared to the electron rest energy mc?. In this
case the energy hw' of the scattered photon is not changed: ho' = hw, since
for small recoil momenta the recoil energy may be neglected.

! See A. S. Davydov, Quantum Mechanics, 2nd edn, Pergamon, Oxford, 1976, Sections 81 and
95.
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The scattering from an initial state with one photon of momentum Ak and
polarization £,(k) (with & =1 or 2) to a final state with one photon of
momentum #k’ and polarization g4(k") (with g = 1 or 2) can occur in first-
order perturbation theory via the term in A? in the interaction (1.62). It can
also occur in second-order perturbation theory via the term linear in A in Eq.
(1.62), but one can show that under our conditions the contribution of the
sccond-order process is negligible! The operator A2(0,t) can, from
k. (1.38), be written

he?
2 _ I .
A0, 1) = éz Z T PNARE (k1) £(k2))
x [a(ky) e™ " + ar(ky) e Ilagkz) €7 + al(kz) €],
(1.68)

where @, = c|k,|, r = 1, 2. This operator can bring about the transition from
the initial state |k, a) to the final state |k’, 8> (we use a somewhat simplified
but unambiguous notation) in two ways: either of the factors in square
parentheses can act to absorb the initial photon, and the other factor then
creates the final photon. One then obtains the matrix element for this transi-
tion from Eq. (1.62)

€2 2
3z A7 DIk, @) =

<K, B

. k . k/ i(w' — o)t

2mV(ww/)1/2 2 ( ) sﬁ( )e

where w = c|k| and o’ = ¢|k’|. The transition probability per unit time for a
photon, initially in the state |k, a), to be scattered into an element of solid

angle dQ in the direction k', and with polarization g4(k’), is given by

2 Vk'? dk' dQ
r j—-— d(hw' — hw)

wa—'ﬁ(k ) dQ = _h_ (271')3

eth \? ,

c €2 2 5
=— (k) £5(k)]* dQ
V<4nmcz> [8( ) 8[1( )]

where |k’| = |k|. Dividing this transition probability per unit time by the
incident photon flux (¢/V), one obtains the corresponding differential cross-
section

0a-p(k') dQ = rileq(k) £4(k")]* dQ, (1.69)

P See J. J. Sukurai, Advanced Quantun. Mechanics, Addison-Wesley, Reading, Mass., 1967,
p. 5L
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where the classical electron radius has been introduced by

2

ro = 2.818f. (1.70)

~ 4nmc?

For an unpolarized incident photon beam, the unpolarized differential
cross-section (i.e. the final polarization state is not observed) is obtained from
Eq. (1.69) by summing over final and averaging over initial polarization
states. We introduce the abbreviations g, = €,(k) and g5 = g4(k’). Since &;, &,
and k = k/|k| form an orthonormal coordinate system,

(655 = 1 — (k-gp)%.

gy

Similarly
2
Y (k-gp)?=1—(k-k)>=sin*0
F=1
where 6 is the angle between the directions k and k' of the incident and
scattered photons, i.e. the angle of scattering. From the last two equations

2 2
i Zl yzﬁ (ex"£5)* = 32 — sin? ) = 3(1 + cos?6) (1.71)

and hence the unpolarized differential cross-section for scattering through an
angle 0 is from Eq. (1.69) given as

o(0) dQ = 3r¥(1 4 cos? ) dQ. (1.69a)

Integrating over angles, we obtain the total cross-section for Thomson
scattering

8
Grotar = ?”rg = 6.65 x 10725 cm?, 1.72)

1.5 APPENDIX: THE SCHRODINGER, HEISENBERG AND
INTERACTION PICTURES

These three pictures (abbreviated S.P., H.P. and I.P.) are three different ways
of describing the time development of a system. We shall derive the H.P. and
the I.P. from the S.P. Quantities in these three pictures will be distinguished
by the labels S, H and 1.

In the S.P. the time dependence is carried by the states according to the
Schrodinger equation

d
i |4, s = HIA, t)s. (1.73)
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This can formally be solved in terms of the state of the system at an arbitrary
nitial time tq

|4, t)s = UlA, to)s (1.74)

where U is the unitary operator:

-

U= U(t, to) = e HE 1)k (1.75)

By means of U we can carry out a unitary transformation of states and
operators (O) from the S.P. to the H.P. in which we define

A, tyn = UT|A4, t)s = |4, to)s (1.76)
and
o¥(r) = U'OSU. 1.77)

At t = to, states and operators in the two pictures are the same. We see
from Eq. (1.76) that in the H.P. state vectors are constant in time; the time-
dependence is carried by the Heisenberg operators. From Eq. (1.77)

HY = HS = H. (1.78)

Since the transformation from the S.P. to the H.P. is unitary, it ensures the
invariance of matrix elements and commutation relations:

S<Ba tloslA’ t>S = H<B9 thH(t)lA, t>H’ (179)

and if O and P are two operators for which [0S P5] = const., then
| O%(2), PH(t)] equals the same constant.
Differentation of Eq. (1.77) gives the Heisenberg equation of motion

it % OM(t) = [OY(t), H]. (1.80)

I'or an operator which is time-dependent in the S.P. (corresponding to a
quantity which classically has an explicit time dependence), Eq. (1.80) is
augmented to '

d F
ih 4 O%() = ih = 0%(t) + [0"(), H]. (1.81)

We shall not be considering such operators.
The 1.P. arises if the Hamiltonian is split into two parts

H=H, + H,. (1.82)

In quantum field theory H, will describe the interaction between two fields,
themselves described by Hy. [Note that the suffix I on H; stands for
‘interaction’, [t does not label a picture. Eq. (1.82) holds in any picture.] The
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I.P. is related to the S.P. by the unitary transformation

Uo = Uq(t, to) = e~ iHoltto)h (1.83)

1¢.
|A, 1>, = UIA, t)s (1.84)

and
0(t) = UL0OSU,. (1.85)

Thus the relation between LP. and S.P. is similar to that between H.P.
and S.P., but with the unitary transformation U, involving the non-
interacting Hamiltonian Hy, instead of U involving the total Hamiltonian H.
From Eq. (1.85):

Differentiating Eq.-(1.85) gives the differential equation of motion of
operators in the I.P.:

ih % 0'(t) = [0Y(t), H,]. (1.87)

Substituting Eq. (1.84) into the Schrédinger equation (1.73), one obtains
the equation of motion of state vectors in the I.P.

d
ih @ |4, 1 = HY(t)|A4, t) (1.88)

where
Hll(t) — eiHo(t—to)/h H]S e-iHo(t—to)/h' (189)

PROBLEMS

1.1 The radiation field inside a cubic enclosure, which contains no charges, is specified
by the state

C'l

e = exp (=4el®) 3, 1>

where ¢ = |c| ¢ is any complex number and |n) is the state (1.31) in which there
are n photons with wave vector k and polarization vector €,(k) present, and no
others. Derive the following properties of the state |c).
(i) |c> is normalized: {c|c) = 1.
(ii) lc) is an eigenstate of the destruction operator g,(k) with the complex
eigenvalue c:
a(k)lc) = clc).
(iii) The mean number N of photons in the enclosure in the state [¢) is given by
N ={cINle) =] (A)

where N is the total photon number operator.
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(iv) The root-mean-square Nuctuation AN in the number of photons in the
enclosure in the state |¢) is given by
(AN = {IN?ed> — N2 =% (B)

(v) The expectation value of the electric field E in the state |¢) is given by

hﬂ)k 12
T (clE|le) = —¢g,(k)2 (—27> c) sin (k=x — ayt + J) ©

where V is the volume of the enclosure.
(vi) The root-mean-square fluctuation AE of the electric field in the state |¢) is
given by
h
(AE)? = (c|E?[c) — (clEle)? = .
2V
We noted in Section 1.2.3 that the expectation value of E in a state with a definite
number of photons is zero, so that such a state cannot represent a classical field,
even for very large photon numbers. In contrast, it follows from Egs. (A)~(D) that
the relative fluctuation in photon numbers

AN

(D)

N—l/2

tends to zero as N — o0, and that the fluctuation AE becomes negligible for large
field strengths, i.¢. |¢> goes over into a classical state in which the field is well defined
as N — o0. The state |c) is called a coherent state and represents the closest
quantum-mechanical approach to a classical electromagnetic ficld. (For a full
discussion, see the book by Loudon, quoted at the end of Section 1.2.)

The Lagrangian of a particle of mass m and charge g, moving in an electromagnetic

field, is given by
L(x, %) = $mi2 + %A-x P
where A = A(x,t) and ¢ = ¢(x, t) are the vector and scalar potentials of the

clectromagnetic field at the position x of the particle at time ¢.
(i) Show that the momentum conjugate to X is given by

p=m3‘(+%A (A)

(i.e. the conjugate momentum p is not the kinetic momentum mx, in general) and
that Lagrange’s equations reduce to the equations of motion of the particle
[compare Eq. (1.60)]

1
m~X=q|:E+z)'(/\B:|a (B)

where E and B are the electric and magnetic fields at the instantaneous position of
the charge.
(ii) Derive the corresponding Hamiltonian [compare Eq. (1.59)]
H= 9a) +
“oam\P T 19

und show that the resulting Hamilton equations again lead to Egs. (A) and (B).
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1.3 For Thomson scattering of an unpolarized beam of photons, obtain the
differential cross-section for scattering through an angle 6, with the scattered
radiation being linearly polarized in a given direction. By considering two
mutually perpendicular such directions, use your result to re-derive Eq. (1.69a)
for the unpolarized differential cross-section.

Show that for 8 = 90°, the scattered beam is 100 per cent linearly polarized in
the direction of the normal to the plane of scattering.



CHAPTER 2

Lagrangian field theory

In the last chapter we quantized the electromagnetic field by Fourier
unalysing the classical field into normal modes and imposing harmonic
oscillator commutation relations on the normal coordinates. We shall now
take the fields at each point in_space as_the dynamical variables and
quantize these directly. This approach generalizes the classical mechanics of
n system of partxcles and its quantxzatlon, to a continuous system, 1e to
Jagranglan density) from which theu field_equations follow_ by means of
Humiiton’s principle. One 1ntroduces momenta _conjugate to the ﬁelds and
imposes canonical commutation relations d1rect1y on the fields and the
conjugate momenta. This formalism provides a systematic quantization
procedure for any classical field theory derivable from a Lagrangian. Since
thiy approach is equivalent to that of the last chapter, one can only obtain
bosons in this way and a different formalism will be needed for fermions.

Anothcr difference from Chapter 1 is that the theory will now be
developed in a manifestly relativistically covariant form, and in Section 2.1 we
shall define our refativistic notation. The classical Lagrangian field theory
will be dcvcloped in Section 22,10 be quantized in Section 2.3. An important
consequent conservation laws are contained in the Lagrangian Q‘?RS_!,EX We
shall consider some of these aspects in Section 2.4.

""the relevant tugrangian and Hamillonian mechanics is, for example, developed in H.
Galdwisin, Clussical Mechanics, 2nd edn, Addison-Wesley, Reading, Mass., 1980, Chapters 2 and

K orin t. D. tunduu und E, M. Lifshitz, Mechanics, Pergamon, Oxford, 1960, Sections 1-7 and
Nection 40.
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73 ' RELATIVISTIC NOTATION |

We shall write x* (1 = 0, 1, 2, 3) for the space-time four-vector with the time
component x° = ct and the space coordinates x/ (j = 1, 2, 3), i.e. x* = (ct, X).
The components of four-vectors will be labelled by Greek indices, the
components of spatial three-vectors by Latin indices.

By means of the metric tensor g,,, with components

Joo g11 92.2 g33 , Q1)
Guw=0 ifu#v
we define the covariant vector x, from the contravariant x*:
3
X, = ZO X’ = gpX’. 2.2)

In the last expression we have used the summation convention: repeated
Greek indices, one contravariant and one covariant, are summed. From
Eqgs. (2.1) and (2.2) we have x, = (ct, —x).

We also define the contravariant metric tensor g* by

g*gu = gt = o} (3)

where 6% is the usual Kronecker delta: 62 = 1if A=v, and 82 =0 if 2 # v.
From Eqgs. (2.1) and (2.3) ¢** = g,..
a A Lorentz transformation

Xt o X% = AR 2.4)
leaves.

x*x, = (x°)?% — x* .5)

invariant, i.e. x*x', = x*x, is a scalar quantity. Hence

S —

AMA,, = 5. (2.6)

(In addition the matrix A* must be real to ensure the reality of the space—
time coordinates.)

A four-component object s* (s,) transforming like x* (x,) under Lorentz
transformations, and hence with s*s, invariant, is a contravariant (covariant)
four-vector. An example is the energy-momentum vector p* = (E/c, p). When
no confusion can result, we shall often omit the tensor indices, e.g. we may
write x for x* or x,,.

The scalar product of two four-vectors a and b can be written in various
ways:

ab=a*b, = a,b* = g,,a"b’ = -~ = a’b° —a-b. 2.7
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l.ikc]x’l = x“x,‘,fso the scalar product ab is an invariant under Lorentz
transformations,

The four-dimensional generalization of the gradient operator V transforms
like a four-vector. If ¢(x) is a scalar function, so is

T %
b= ® 1
and hence - .
J
2 =0 =0 ()

is & covariant four-vector. Similarly

9

0x,

=dp=¢* (24b)

is it contravariant four-vector. Note that indices following a comma denote
dilferentiation. Finally, we note that the operator [J is a scalar:
r 1 62 ”}

0= 55z- V=0 2.9)

(23) CLASSICAL LAGRANGIAN FIELD THEORY

We consider a system which requires several fields ¢.(x), r=1,..., N, to
speeify it. The index r may label components of the same field [for example,
the components of the vector potential A(x)] or it may refer to different
independent fields. We restrict ourselves to theories which can be derived by
means of a variational principle from an action 1ntegral 1nv01v1ng a
l.agrangian density

L = L(r, br.a) (240)

where the derivative ¢, 4 is defined by Eq. (2.8a). The Lagrangian density
(2.10), depending on the fields and the1r first denvatlves only, is not the
most general case possible, but it covers all theories discussed in this book
nnd greatly simplifies the formalism.

We define the action integral S(Q) for an arbitrary region Q of the four-
dimiensional space-time continuum by

S(Q) = j d4x-¥)((br’ Or.a)s (2x1)
Q0

where d*x stands for the four-dimensional element dx°® d3x.
We now postulate that the equations of motion, i.e. the field equations, are
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lobtained from the following variational principlel which is closely analogous
to Hamilton’s principle in mechanics. For an arbitrary region Q, we consider
variations of the fields,

¢(x) = (%) + 9¢,(x), (212
which vanish on tl}_emswurfacef F(Q_ﬁbqqujpg‘the region Q
S¢.(x) =0 on I'(Q). (2.13)

The fields ¢, may be real or complex. In the case of a complex field ¢(x), the
fields $(x) and ¢*(x) are treated as two 1ndependent fields. Alternatively, a
complex field ¢(x) can be decomposed into a pair of real fields which are then
treated as independent fields. We now demand that for an arbitrary region Q
and the variation (2.12-2.13) the action (2.11) has a stationary value, i.e.

55(Q) = 0. .14)
Calculating 4S(Q) from Eq. (2.11), we obtain}

0¥
S Q) = d4 5 r ra
i ( ) fn {ad’r ¢ 54), o 5¢ }

0 0 (02 0 (o
g R e o R R Gt

where the last line is obtained by partial integration, since

6
5¢r a a ¢r-

The last term in Eq. (2.15) can be converted to a surface integral over the
surface T'(Q) using Gauss’s d1vergence theorem in four dimensions. Since
d¢, = Oon T, this surface integral vanishes. If 6S(Q) is to vanish for arbitrary
regions Q and arbitrary variations J¢,, Eq. (2.15) leads to the Euler—
Lagrange equations

0z o (0%
O,  0x* \O¢, .4

These are the equations of motion of the fields.

In order to quantize this classical theory by the canonical formalism of
non-relativistic quantum mechanics we must introduce conjugate variables,
We are dealing with a system with a continuously infinite number of degrees
of freedom, corresponding to the values of the fields ¢,, considered as
functions of time, at each point of space'x. We shall again approximate the

>=0, F=1,..,N. (216)

! In Eq. (2.15) and thereafter summations over repeated indices r and «, occurring in products,
is imptied.
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system by one having a countable number of degrees of freedom and ulti-
mately go to the continuum limit.

Consider the system at a fixed instant of time r and decompose the three-
dimensional space, i.e. the flat space-like surface t = const., into small cells of
cquaf volume dx;, labelled by the index i = 1, 2,... We approximate the values
of the fields within each cell by their values at, say, the centre of the cell
x = X;. The system is now described by the discrete set of generalized
coordinates:

4ni(t) = (G, 1) = d(x;, 1), r=1,...N, i=12.. (217

which are the values of the fields at the discrete lattice sites x;. If we also
replace the spatial derivatives of the fields by their difference coefficients
between neighbouring sites, we can write the Lagrangian of the discrete
system as

L(t) = Y. 0% L@, 1), 61, 1), 610", 1) @18)

whcre the dot denotes differentiation with respect to time. The Lagrangian
density in the ith cell, &;, depends on the fields at the neighbouring lattice
sites i' on account of the approximation of the spatial derivatives. We define
momenta conjugate to g,; in the usual way as

Pl = a4 = SgGny - O (2.19)
wherc
0%;
m(, 1) = cryons (2.20)

The Hamiltonian of the discrete system is then given by
H= Z priqri —-L
=Y oxi{m{i, (i 1) — Zi}. (221

With a view to going to the limit dx; — 0, i.e. letting the cell size and the
lattice spacing shrink to zero, we define the fields conjugate to ¢,(x) as

3
”L?r'(x) T4

-

(222

In the limit as ox; — O, m,(i, t) tends to m,(x;, t), and the discrete Lagrangian
ind Hamiltonian functions (2.18) and (2.21) become

L(t) = J‘daxg(‘bn ¢r.a) (223)
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and

- f dPx# (), (2.24)

where the Hamiltonian density #°(x) is defined by

A = 1)) — LB 1) @23

and the integrations in Eqs. (2.23) and (2.24) are over all space, at time t. With
our Lagrangi an density which does not depend explicitly on the timm
Hamiltonian H is of course constant in time. The conservation of energy will
be proved in Section 2.4, where the expressions (2.24) and (2.25) for the
Hamiltonian will also be re-derived.

¢ As an example, consider the Lagrangian density

= 4" — 1% (226

for a slngle real field ¢(x), with p a constant which has the dimensions
(length)' In the next chapter we shall see that the quanta of this field are
spinless neutral bosons with Compton wavelength ™', ie. particles of mass
Thi/o)."The equation of motion (2.16) for this field is the Klein-Gordon
equation

(O + u))é(x) = 0, (2.27)
the conjugate field (2.22) is

1.
n(x) = =5 $(x) 2.28)

and the Hamiltonian density (2.25) is
H(x) = 3[*n*(x) + (Vo)* + p?¢°1. (2.29)

23 QUANTIZED LAGRANGIAN FIELD THEORY

It is now easy to go from the classical to the quantum field theory by inter-
preting the conjugate coordinates and momenta of the discrete lattice
approximation, Eqs. (2.17) and (2.19), as Heisenberg operators and subject-
ing these to the usual canonical commutation relations:

5rs5u

5%y . (2.30)
Lo(, 050", ] = [ G, 1), 1, )] = O

If we let the lattice spacing go to zero, Eqs. (2.30) go over into the

[(br(]a t) ns(.] t)] - h
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commutation relations for the ficlds:

Lon(x, 1), ml(X', 1)] = ik &5 6(X — X') }
Lon(x, 1), dulX', )] = [me(X, 1), TelX', 1)] = O

stice in the limit, as §x; = 0, §;;:/6x; becomes the three-dimensional Dirac
delta function §(x — x'), the points x and x’ lying in the jth and j'th cell,
rcx’pcctively Note that the canonical commutation relations (2. 31) involve

(2.31)

next chapter we shall obtaln the commutators of the fields at dlfferent
times.

IFor the Klein—Gordon field (2.26), Egs. (2.31) reduce to the commutation
relations:

[o(x, 1), p(X, 1)] = ihc?d(x — x) } 232)

[o(x, ), p(X, )] = [d(x, ), p(x', )] = O

In the next chapter we shall study the Klein—-Gordon field in detail.

24 SYMMETRIES AND CONSERVATION LAWS

It follows from the Heisenberg equation of motion of an operator O(t)
., dO(t)
h———==[0(t),H
ih—— =00, H]

(we are not considering operators with explicit time-dependence) that O is a

constant of the motion provided

[0,H]=0

Constants of the motion generally stem from invariance properties of
systems under groups of transformatlons e.g. translational and rotational
invariance lead to conservation of linear and angular momentum, respec-
tively. Such transformations lead to equivalent descriptions of the system; for
example, referred to two frames of reference related by a Lorentz transforma-
tion. Quantum-mechanically, two such descriptions must be related by a
unitary transformation U under which states and operators transform
according to

¥> - ¥)>=U¥), 0-0=U0U" (2.33)

The unitarity of the transformation ensures two things. Firstly, operator
cquations are covariant, i.e. have the same form whether expressed in terms of
the original or the” transformed operators. In particular, this will be true of the
commutation relations of the fields and of the equations of motion, e.g.
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Maxwell’s equations will be covariant with respect to Lorentz transforma-
tions. Secondly, under a unitary transformation, amplitudes and hence
observable predictions are invariant.

If one deals with continuous transformations, the unitary operator U can
be written
U = eleT (2.34)

where 7= T" and « is a real continuously variable parameter. For a = 0, U
goes over into the unit operator. For an infinitesimal transformation

U=x1+idéaT
and Eq. (2.33) becomes
0 =0+60=(1+1i6aT)O(1 — i6aT)

ie.
00 =16a[ T, O]. (2.35)

If the theory is invariant under this transformation, the Hamiltonian H will
be invariant, H = 0, and taking O = H in Eq. (2.35) we obtain [T, H] = 0
i.e. Tis a constant of the motion.

For a field theory derived from a Lagranglan density <, one can construct
conserved quantities from the invariance of % under symmetry transforma-
tions. We shall show that for such a theory, the invariance of & leads to
equations of the form

of*

0x*
where the f* are functions of the field operators and their derivatives. If we
define

=0 (2.36)

Ft) = jd3xf‘(x, 1), 2.37
where integration is over all space, then the continuity equation (2.36) gives
1dF ° 300 .
= — | d3 —fi =0 2.36
— x ¥ 5g /i (2.362)

where the last step follows by transforming the integral into a surface integral

by means of Gauss’s divergence theorem and assuming (as always) that the

fields, and henc_g the f, tend to zero suﬁic1ently fast at infinity.} Hence
0= fd3xf°(x, t) (2.38)

If one employs a finite normalization volume for the system, as we did in the last chapter, the
surface integral vanishes on account of the periodic boundary conditions.
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is a conscrved quantity. With 7'= F°, the corresponding unitary operator is
then given by Eq. (2.34).

The interpretation of the four-vector f* follows from Eqgs. (2.36)(2.38).f°/c
and f! are the three-dimensional volume and current densities of the
conserved quantity F%c. Eq. (2.36a), applied to a finite three-dimensional
volume ¥ bounded by a surface S, then states that the rate of decrease of F °/c
within ¥ equals the current of F°/c flowing out through S. Correspondingly,
the four-vector f*(x), satisfying the conservation equation (2.36), is called a
conserved current. (Strictly speaking, one should call it a four-current
density.) The result, that the invariance of the Lagrangian density & under a
continuous one-parameter set of transformations implies a conserved
quantity, is known as Noether’s theorem.

We apply these ideas to the transformation

Dr(x) = (%) = Px(x) + S¢y(x) (239)
of the fields. The change induced in & is given by

0¥ 0¥ d (o0&
$=—5 D u— =\ — *
0L = 54,00+ 5, 00rs ax’<a¢n¢5¢">

where the last step follows since ¢,(x) satisfies the field equations (2.16), and
summations over repeated indices r and a are implied as previously. If & is
invariant under the transformation (2.39) so that §.# = 0, the last equation
reduces to the continuity equation (2.36) with

0¥

" ..
and the constant of the motion, from Eqs. (2.38) and (2.22), is

f* o,

F°=c¢ jd3xn,(x) S¢,(x). (2.40)

An important particular case of the above arises for complex fields ¢,, i.e.
non-Hermitian operators in the quantized theory. ¢, and ¢} are then treated
as independent fields, as discussed earlier. Suppose & is invariant under the
transformation

8- o7 = P x (1 — ie)g) 24D

where ¢ is a real parameter, and the right-hand expressions result for very
small &. From Eqgs. (2.41)

o¢, = icgh,, St = —ieg},

br = @, = €%, ~ (1 + ie)g, }
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and Eq. (2.40) becomes

FO =igc fd3x[n,(x)¢r(x) — m(x)Pi(x)].

Since F° multiplied by any constant is also conserved, we shall, instead of
F°, consider

0= _% f d3x[1,(x)$(x) — mHxX)PHX)], (2.42)

where ¢ is a constant to be determined later. The reason for this change is
that 4+ g will turn out to be the electric charges of the particles represented by
the fields.

We evaluate the commutator [Q, ¢,(x)]. Since ¢, and ¢} are independent
fields, ¢, commutes with all fields except n, [see Eq. (2.31)]. Hence taking
(x)° =x° =ct,

iq _— '
[Q. ¢ ()] = — f d*x'[ms(x"), $n(x)]ps(x"),
and using the commutation relations (2.31) one obtains

[Q’ (br(x)] = —“I(br(X)- (2,4\3)

From this relation one easily verifies that if Q') is an eigenstate of Q with
the eigenvalue Q', then ¢,(x)|Q’> is also an eigenstate of Q belonging to the
eigenvalue (Q' — ¢), and correspondingly ¢{(x)|Q’> belongs to (Q’ + ¢). In
the next chapter we shall see that, consistent with these results, ¢, and ¢f are
linear in creation and absorption operators, with ¢, absorbing particles of
charge (+g) or creating particles of charge (— q), while ¢! absorbs particles of
charge (— ¢) or creates particles of charge ( + q). Hence, we interpret the opera-
tor Q, Eq. (2.42), as the charge operator. We have therefore shown that
charge is conserved (dQ/dt =0, [Q, H] = 0), provided the Lagrangian density
& is invariant with respect to the transformation (2.41), which is known as a
global phase transformation [co rrespondlng to the fact that the phase ¢ in Eq.
(2.41) is independent of x] or as a gauge transformation of the first kind. We
see from Eq. (2.42) that we require complex, i.e. non-Hermitian, fields to
represent_particles with charge Real, i.e. Hermitian, fields represent un-
charged particles. Interpretmg Eq. (2.42) as an operator involves the usual
ambiguity as to the order of factors. We shall have to choose these so that for
the vacuum state |0), in which no particles are present, Q/0> = 0. We shall
return to this point in the next chapter.

The unitary transformation corresponding to the phase transformation
(2 41) can, from Eq (2 34) be written

U = ¢*2 (2.44)
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Hence for infimtesimally small a, we obtain from Eq. (2.33)

A

= ¢, +ialQ, ¢.] = (1 —10g)¢, (2.45)
where the last Line follows from Eq. (2.43). Comparing Eqs. (2.45) and (2.41),
we see that they are consistent if we take e = —ag.

Although we have talked of electric charge, with which one is familiar, this
unalysis applies equally to other types of charge, such as hypercharge.

Conservation of energy and momentum and of angular momentum follows
from the invariance of the Lagrangian density. &% under translations and
rofations. Since these transformations form a continuous group we need only
cousider infinitesimal transformations. Any finite transformation can be built
up through repeated infinitesimal transformations. In four dimensions these
are given by

Xo = Xy = Xo + 0Xg = Xo + £5x% + 65, (2.46)

where d, is an infinitesimal displacement and &,; is an infinitesimal
mntisymmetric tensor, €,; = —gg,, to ensure the invariance of x,x* under
liomogencous Lorentz transformations (6, = 0).

The transformation (2.46) will induce a transformation in the fields which
we assume to be

$r(x) = ¢(x) = $r(X) + 2eapSH Ps(x). (2.47)

In this section, summation over repeated indices r, s, labelling fields, as well as
over Lorentz indices o, f, is implied. Here x and x’ label the same point in
spuce time referred to the two frames of reference, and ¢, and ¢, are the field
vomponents referred to these two coordinate systems. The coefficients S in
1'g. (2.47) are antisymmetric in « and B, like &,5, and are determined by the
transformation properties of the fields. For example, for the vector potential
A,v), Eq. (2.47) reduces to the transformation law of a vector.

Invariance under the transformations (2.46) and (2.47) means that the
L.ugrangian density expressed in terms of the new coordinates and fields has
the same functional form as when expressed in the original coordinates and
liclds:

ZL((x), dr.a(x)) = LX), ¢B.a(X"))- (2.48)

(licre ¢, (x') = dpu(x’)/0x"*) From Eq. (2.48) the covariance of the field
cquations, etc. follows; i.e. they will have the same form expressed in terms of
cither the original or the transformed coordinates and fields.

'The conservation laws follow by expressing the right-hand side of Eq.
{2.48) in terms of the original coordinates and fields by means of Eqgs. (2.46)
und (2.47). We shall first state and discuss these results, postponing their
derivation to the end of this section,
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For a translation (i.e. &, = 0) one obtains the four continuity equations

0T

— =0, 249
e (2.49)
where
0F 0o,
TH¥=_—— — g 2.50
56, 0%, LI (2.50)
and the four conserved quantities are
0
cP?= J‘d3xf°"‘ = fd3x{cn,(x) w - .‘[goa}- (2.51)
X

P* is the energy-momentum four-vector, with

cPO = J‘dSX{TI,.(X)(ﬁ,.(X) - f[((ﬁn ¢r,<z)}

(2.51a)
= f d3x# = H
being the Hamiltonian, Eqs. (2.24) and (2.25), and
. 0
Pi= f $x, () 2 (2.51b)
6x,~

being the momentum components of the fields. This interpretation will be
confirmed when we come to express these operators in the number
representation. Correspondingly 7 is called the energy-momentum
tensor.

For a rotation (i.e. §, = 0) Eqs. (2.46)—(2.48) give the continuity equations

apy
OMT o, 2.52)
O0x*
where
0¥
M = ; SBG(x) + [XET™ — X' T, (2.53)
and the six conserved quantities (note that .#*? = — #*%) are

cM® = J‘d3xdl{°“’

= f Bx{[¥T % — X T + e, (x)SPdy(x)}. (2.54)
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For two space-like indices (i, j = 1,2, 3), MY is the angular momentum
operator of the lield (M '? being the z-component, etc.). Remembering that
7 /¢ is the momentum density of the field [see Egs. (2.51)], we interpret the
term in square brackets in Eq. (2.54) as the orbital angular momentum and
the last term as the intrinsic spin angular momentum.

We return to the derivation of the continuity equations (2.49) and
(2.52).* The variation of a function @,(x) with the argument unchanged was
delined in Eq. (2.39) as

5¢r(x) = ¢;.(X) - ¢,-(X). (2553)
In addition, we now define the variation
Ord(x) = Py(x) — (%) (2.55b)

which results from changes of both the form and the argument of the
[unction. We can then write

1.(x) = [By(x) = $u(x)] + [D:(X) — D:(x)]
5¢

(2.56)

where dx, is given by Eq. (2.46). To ﬁrst order in small quantities this can be
written

5T¢,.(x) = 5(}5,.()6) + % 5xﬁ. (257)
Xp

We can similarly write Eq. (2.48) as
0 = L(PUx), . X)) — L(Po(X), Pr,2(x))

—-5.‘[+ay

e 2.58
X" ox (2.58)
For 6% we obtain, since ¢,(x) satisfies the field equations (2.16),
0¥ 0¥
= a 5 r -~ r.a
0L =54, %0 * 34, O

o fog ) @ (0¥ 39,
R e B e L L | SCE

We combine Egs. (2.58) and (2.59) to obtain the continuity equations

of*
ox* 0,

(2.60)

! The reader may omit the rest of this section as the details of this derivation will not be
required fater on.
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where

0¥

T = i

vy — T 6x, 2.61)

with 7 given by Eq. (2.50).

We first consider translations, i.e. ¢,; = 0, so that from Eqgs. (2.46) and
(2.47) x5 = d5and 61¢, = 0. Eq. (2.61) reduces to f* = — 7 * §x,, and, since
the four displacements J, are independent of each other, Eq. (2.60) reduces to
the four continuity equations (2.49) for energy and momentum conservation.

Finally, we consider rotations, i.e. §, = 0. From Eqs. (2.46) and (2.47) for
ox, and dr¢,, and the antisymmetry of e,5, Eq. (2.61) becomes

£ = Seg, M%7 (2.62)

where #*7 is the tensor defined in Eq. (2.53). Since the rotations &g, are
independent of each other, Eq. (2.60) reduces to the continuity equations
(2.52).

PROBLEMS
2.1 Show that replacing the Lagrangian density & = 2(¢,, ¢..,) by
F' = L+ ,A*(x),

where A*(x), a = ., 3, are arbitrary functions of the fields ¢,(x), does not alter
the equations of motlon

2.2 The real Klein—-Gordon field is described by the Hamiltonian density (2.29). Use
the commutation relations (2.31) to show that

[H, ¢(x)] = —ihc’n(x),  [H,n(x)] = ik(u® — V3)$(x),

where H is the Hamiltonian of the field.
From this result and the Heisenberg equations of motion for the operators ¢(x)
and n(x), show that

d(x) = n(x), (O + pHP(x) =
2.3 Show that the Lagrangian density

2
& = —3[8:0,()IE"P* ()] + 3[3:.0%(x)][0,¢*(x)] + % Pu(X)*(x)

for the real vector field ¢*(x) leads to the field equations
[92p(00 + %) — 8.051¢P(x) = 0,
and that the field ¢*(x) satisfies the Lorentz condition
0uP*(x) =

2.4 Use the commutation relations (2.31) to show that the momentum operator of the

fields
= j XT(x )645 o) (2.51b)

‘xJ
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satisfies the equations

[P}v (/),(X)] = ~i

) )
OO ] = —in T,
0x; 0x;

Hence show that any operator F(x) = F(¢.(x), n.(x)), which can be expanded
in a power series in the field operators ¢,(x) and =,(x), satisfies
OF (x)
axj'
Note that we can combine these equations with the Heisenberg equation of
motion for the operator F(x)

[P/ F(x)] = —ihk

OF (x
[H, F(x)] = —ihc (x)
. 0xo
to obtain the covariant equations of motion
., OF(x
[P% F(x)] = —ih ( ),
Oxy
where P = H/c.
Under a translation of coordinates
Xy = X, = X, + 0, (6, = a constant four-vector)

a scalar field ¢(x,) remains invariant:
Fx) = Plxy), ie. @(x,) = Plx, — o).
Show that the corresponding unitary transformation
P(x) = ¢'(x) = Up(x)U T

is given by U = exp[ —id, P*/h], where P*is the energy-momentum four-vector of
the field, Egs. (2.51). (You may find the results of the previous problem helpful.)






CHAPTER 3

The Klein—Gordon field

In Chapter 1 we quantized the electromagnetic field by Fourier analysing it
and imposing harmonic oscillator commutation relations on the Fourier
expansion coefficients. This approach naturally led to photons. In the last
chapter a different procedure, the canonical quantization formalism, led
directly to quantized field operators. We shall now Fourier analyse these field
operators and we shall see that the Fourier coefficients, which are now also
operators, satisfy the same commutation relations as the absorption and
creation operators of the number representation. In this way the interpreta-
tion in terms of field quanta is regained.

In this chapter we shall consider relativistic material particles of spin 0.
Photons which are much more complicated on account of their transverse
polarization will be treated in Chapter 5.

3.1 THE REAL KLEIN-GORDON FIELD

For particles of rest mass m, energy and momentum are related by

E? = m*c* + 2 k 3.1

If the particles can be described by a single scalar wavefunction ¢(x), the
prescription of non-relativistic quantum mechanics

p —» —ihv, E — ihd/ot (3.2)
Icads to the Klein-Gordon equation (2.27):
(O +p)p(x)=0 (33)
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(1 = mc/h). The interpretation of Eq. (3.3) as a single-particle equation leads
to difficulties. These are related to defining a positive-definite particle density
and to the two signs of the energy E which result from Eq. (3.1). We shall not
discuss these difficulties but only mention that they are typical of relativistic
single-particle equations. We shall see that such difficulties do not occur in
the many-particle theories which result when the fields, such as the Klein-
Gordon field ¢(x), are quantized.*

We know from Eq. (2.54) for the angular momentum of the field that a
single scalar field possesses orbital but no spin angular momentum, i.e. it
represents particles of spin 0. Hence, the Klein—Gordon equation affords the
appropriate description of n-mesons (pions) and K-mesons, both of which
have spin 0.
~ We shall now consider a real scalar field ¢(x), satisfying the Klein-Gordon
equation (3.3). Such a field corresponds to electrically neutral particles.
Charged particles, described by a complex field, will be dealt with in the next
section.

We know from Section 2.2 that the Klein-Gordon equation (3.3) can be
derived from the Lagrangian density

L =53¢0 — u*d?), (3.5)
and that the field conjugate to ¢ is
oY 1,
n(x) = % = 2 (). (3.6)

On quantization the real field ¢ becomes a Hermitian operator, ¢' = ¢,
satisfying the equal-time commutation relations (2.32):

[$(x, 1), (X', £)] = ihc?5(x — X') }
[d(x, 1), p(X’, )] = [(x, 1), (X, )] =0

To establish contact with particles, we expand ¢(x) in a complete set of
solutions of the Klein—Gordon equation:

(3.7)

d(x) =" (x) + ¢~ (x) (3.8a)
where
he? \112
¢t (x) = ;(2 Vcw) a(k) e~ % (3.8b)
and
th 1/2 .
P (x) = ; (2 Vwk> a'(k) e**. (3.8¢)

! This is often referred to as second quantization, in contrast to the derivation of the single-
particle wave equations by means of the substitution (3.2).
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These cquations are analogous to Egs. (1.38) lor the photon field. The
summations are again over the wave vectors k allowed by the periodic
boundary conditions, but k° and w, are now given by

kO = %wk = +(u? + k)2 (3.9a)

i.e. k is the wave four-vector of a particle of mass m = uh/c, momentum hk
and energy

E = hw, = +[m?*c* + c2(hk)*]V% (3.9b)

The fact that each operator a(k) occurs paired with its adjoint a'(k) in Egs.
(3.8) ensures that ¢ is Hermitian.

From Egs. (3.8) and the commutation relations (3.7), one easily obtains
the commutation relations for the operators a(k) and a'(k). We shall leave
the details for the reader (see Problem 3.1) and only quote the important
result:

L —
La(k), a'(k')] = Oy } (3.10)

[a(k), a(k)] = [a'(k), a'(k)] = O

These are precisely the harmonic oscillator commutation relations [Eqgs.
(1.19) and (1.29)] and all the results can at once be taken over from Section
1.2. In particular, the operators

N (k) = a'(k)a(k) (3.11)
have as their eigenvalues the occupation numbers
nk)=012,.., (3.12)

and, correspondingly, a(k) and a'(k) are the annihilation and creation
operators of particles with momentum #k and energy Aw,, given by Eq. (3.9).

The Hamiltonian and momentum operators of the Klein—Gordon field are,
from Egs. (2.51), (3.5) and (3.6), given by

H= jd3x%|:§ ¢ + (Vé)? + yquz:l (3.13)
and

P = —fd3x cl—z PV. (3.14)

Substituting the expansion (3.8) in the last two equations one obtains

H =Y hoya'(ak) + 4), (3.15)
k

P= 2‘ hk(a'(k)a(k) + 1), (3.16)
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confirming our interpretation of [a'(k)a(k)] as the number operator for
particles with wave vector k. From the last two equations one also sees directly
that the momentum P is a constant of the motion for the free Klein-Gordon
field. (Nevertheless we prefer the discussion of Section 2.4 because it reveals
the fundamental and general connection between symmetries and conserva-
tion laws.)

From Eq. (3.15) we see that the state of lowest energy, the ground state, of
the Klein—Gordon field is the vacuum state |{0> in which no particles are
present (all n(k) = 0). We can also characterize this state by

ak)j0> = 0, all k, (3.17a)

or, expressed in terms of the field operators (3.8), by
¢*(x)}0> =0, all x. (3.17b)

The vacuum has the infinite energy 13, #w,. As discussed for the radiation
field, only energy differences are observable. Hence, this infinite constant is
harmless and easily removed by measuring all energies relative to the vacuum
state.

One can avoid the explicit occurrence of such infinite constants by normal
ordering of operators. In a normal product, all absorption operators stand to
the right of all creation operators in each product of operators. Denoting the
normal product by N(...) we have, for example,

N(a(k,)a(k,)a’(ks)) = a'(ks)a(k,)a(ks), (3.18)
and
N[¢(x)¢(»)] = N[(¢"(x) + ¢~ ()T (») + ¢~ (»)]
= N[¢*(x)¢*(»)] + N[¢* ()¢~ (»)]
+ N[¢~(x)¢*(»] + N[$~(x)¢~(»)]
=T ()T (M) + ¢~ (1P (%)
+ 7)) () + ¢ ()P (¥), (3.19

where the order of the factors has been interchanged in the second term, i.e.
all positive frequency parts ¢* (which contain only absorption operators)
stand to the right of all negative frequency parts ¢~ (which contain only
creation operators). Normal ordering does not fix the order of absorption or
creation operators, each amongst themselves, but since each of these
commute amongst themselves such different ways of writing a normal

* This definition of the normal product will be modified when fermions are introduced. Another
notation commonly used for the normal product N(4B...L) is :AB... L.
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product arc cqual; for example, expression (3.18) also equals a'(ks)a(k,)a(k,).
Hence in arranging a product of operators in normal order, one simply treats
them as though all commutators vanish.

Clearly, the vacuum expectation value of any normal product vanishes. We
redefine the Lagrangian density & and all observables, such as the energy—
momentum or angular momentum of the field, or their densities, as normal
products. We are free to do this, as it merely corresponds to a particular order
of factors before quantization. With observables defined as normal products,
their vacuum expectation values vanish. In particular, Eqgs. (3.15) and (3.16)
become

= (H/c, P) = Y hk*a'(k)a(k). (3.20)
k
From the vacuum state [0) one constructs particle states in the same way as

was done for photons in Section 1.2. For example, one-particle states are
linear superpositions of

a'(k)|0, all k; (3.21a)
two-particle states are linear superpositions of
a'(k)a'(k)|0, all k and k’ # Kk, (3.21b)
and
(k)12 1
\/2 [4'(k)]1%|0), all k, (3.21¢)

and so on. With the vacuum state normalized, i.e. {0|0) = 1, the states (3.21)
are also normalized. That is the purpose of the factor 1/,/2 in Eq. (3.21c).
Similar factors occur for more than two particles.

The particles of the Klein—-Gordon field are bosons; the occupation
numbers can take on any value n(k) =0,1,2,.... Eq. (3.21b) illustrates
another aspect of boson states: they are symmetric under interchange of
particle labels. Since all creation operators commute with each other, we have

a'(k)a'(k)|0> = a'(k)a'(k)|0>. (3.22)

A2 ‘THE COMPLEX KLEIN-GORDON FIELD)

We shall now extend the treatment of the last section to the complex Klein—-
Gordon field. The new feature this introduces is, as we know from Section 2.4,
that wecan associate a conserved charge with the field. For the real field this was
not possible. We shall concentrate on this aspect of a conserved charge. In other
respects the real and complex fields are very similar, and we shall only quote
the main results leaving verification to the reader.
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For the complex Klein—Gordon field, the Lagrangian density (3.5) is
replaced by

Z = N(¢Lo* — 1*¢'e), (3.23)

where we have at once written the quantized operator as a normal product

@O+ D)) =0, (O +u)g'x)=0. (3.24)
The fields conjugate to ¢ and ¢' are

1. 1.
mx) =3 ¢'x),  ml(x) = 2 9(), (3.25)

and the equal-time commutation relations (2.31) become
[P(x, 1), §'(X/, 1)] = ihc?5(x — X))
[o(x, 1), ¢(x', )] = [p(x, 1), $'(X, )] = [d(x, 1), $(X, )] 5. (3.26)
=[d(x, 1), '(x', )] = [p(x, 1), (X', )] = 0

Analogously to Eqgs. (3.8), we write the Fourier expansions of the fields as

2

1/2
dx)=¢d (X)) + ¢ (x) = ;( he ) [a(k) e ** + b'(k) e**] (3.27a)

2V
and
2
$'(x) = ¢ (x) + ¢'"(x) = Z( he ) [b(k) e~ + a'(k) ™). (3.27b)
k szk

(¢t and ¢’ are the positive and negative frequency parts of ¢'.)
From Egs. (3.26) and (3.27a), one obtains the commutation relations

[a(k), a'(k)] = [b(k), b'(K)] = o, (3.28a)
and the commutator of any other pair of operators vanishes, i.e.
[a(k), a(k)] = [b(k), b(k)] = [a(k), bk")] = [a'(k), b(k')] = 0. (3.28b)

From the commutation relations (3.28) it follows that we can interpret a(k)
and a*(k) and b(k) and b'(k), as absorptxon and creation operators of two
types of partxcles——we shall call them .a-particles and b-particles—and

No(k) = a'(k)a(k),  Ny(k) = b'(k)b(k), (3.29)

as the corresponding number operators with eigenvalues 0, 1, 2, .... Hence a
number representation can be set up as before, with states containing a- and
b-particles generated by means of the creation operators a' and b' from the
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vacuum state [0) which is now defined by
a(k)|0> = b(k)|0> =0, allk, (3.30a)
or cquivalently by
O (x)0> = ¢t (x)|0> =0, all x. (3.30b)

Iixpressed in terms of the absorption and creation operators, the energy—
momentum operator (2.51) of the complex Klein—-Gordon field assumes the
form we expect

= (H/c, P) = Z hk*(N4(K) + Ny(k)). 3.3
We now turn to the charge. From the invariance of the Lagrangian density

(3.23) under the phase transformatlon (2.41) follows the conservation of
charge Q, Eq. (2.42), which now takes the form

0 =3 | ExNIF'P() - $(x)'(0)] (332

The corresponding charge—current density is given by

¢t 0
£100) = (ep(x). j() = [ Po-2Lwl  om

which obviously satisfies the continuity equation
I (f) = (3.34)
ox

lixpressed in terms of creation and absorption operators, Eq. (3.32) becomes
Q=gq Zk: [Na(k) — Ny(k)] (3.35)

which clearly commutes with the Hamiltonian H, Eq. (3.31).

[t follows from Eq. (3.35) that one must associate charges +¢ and — g with
a- and b-particles, respectively. Apart from the sign of the charge, a- and b-
particles have identical properties. Furthermore, the theory is completely
symmetric between them, as one sees from Egs. (3.27)<(3.35). Interchang-
ing a and b merely changes the sign of Q. This result is not restricted to spin 0
bosons but holds generally. The occurrence of anthartlcles in association

with all particles of non-zero charge isa fundamental feature of relativistic
quantum field theory which is fully vindicated by experiment.

An example of a particle-antiparticle palr is the pair of charged pi-mesons.
Taking g = e(>0), one can identify the n*- and = ~-mesons with the a- “and b-
particles of the complex Klein—-Gordon field. On the other hand, for a real
ficld the charge operator Q, Egs. (3.32) or (3.35), is identically zero, and such a
ticld corresponds to a neutral meson, such as the n°.
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The above considerations are not restricted to electric charge. The
invariance of the Lagrangian density % under phase transformations would
allow conservation of other additive quantities which by analogy one would
call some kind of charge other than electric. The above argument would lead
to the occurrence of pairs of particles and antiparticles differing from each
other in the sign of this new kind of charge. Because of this, even electrically
neutral particles may possess antiparticles. This situation does occur in
nature. The electrically neutral pseudo-scalar K°-meson possesses an anti-
particle, the K®-meson, which is also electrically neutral. K® and K° possess
opposite hypercharge, ¥ = + 1, and are represented by a complex Klein-
Gordon field ¢. Hypercharge is very nearly conserved (unlike electric charge
which is always exactly conserved) which is why it is a useful concept. To be
specific, hypercharge is conserved in the strong interactions which are
responsible for nuclear forces and associated production of strange particles,
but it is not conserved in the weak interactions (about 10!? times weaker than
the strong interactions) responsible for the decay of strange particles.

Instead of treating the complex Klein—Gordon field directly in terms of ¢
and ¢' as independent fields, as we have done, one can define two real
Klein—Gordon fields ¢, and ¢, by

1 1
¢ = 7 (p1 +iga), o' = 7 (1 — i), (3.36)

and use these as independent fields. We shall not give the development in
terms of the real fields as the two approaches are closely related and very simi-
lar. Since the fields ¢, and ¢, are real, the creation and annihilation operators
associated with them cannot describe charged particles, and it is only linear
combmatrons of them, correspond ding to the complex M6), which
descrrbe 4charged particles. Conseguently, when dealing_with conserved
charges, it is in general more natural to work directly with the complex ﬁelds

3.3 COVARIANT COMMUTATION RELATIONS

While the equations of motion obtained using the Lagrangian formalism are
manifestly covariant, this is not so obvious for the field commutation
relations derived by the canonical formalism, since these single out equal
times. Taking the real Klein—-Gordon field as a typical example, we shall
illustrate the covariance of the commutation relations by calculating the com-
mutator [¢(x), ¢(y)] for two arbitrary space—time points x and y. Since this
commutator is a scalar, it must equal an invariant function.
Writing ¢ = ¢* + ¢, we note that

(6" (x) ¢ (M =[¢™(x), ¢~ (W] =0, (337
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since ¢ ' (¢ ) contains only absorption (creation) operators. Hence

[o(x), (] =[P (x), " (N] + [ (x), ¢ (W], (3.38)

and we need only evaluate the first commutator on the right-hand side of this
equation. From Eqgs. (3.8) one obtains

. _ he? 1
(o7 (x), ¢~ (W] = 2V & (o)

e [k
L L e A 3.39
2(2n)3 J w, ¢ (3-39)

[a(k), af(k/)] e—ikx+ik'y

where we have taken the limit ¥V — oo [see Eq. (1.48)], and in the last integral
ko = wy/c. We introduce the definition

-1 ak . ‘
o e ikx ko = wy/c, (3.40)

A (x)EZ(zn)3 W, ’

since this and related functions will occur repeatedly.} Eq. (3.39) can then be
written

(o (x), &~ (¥)] = ihcAT (x — ), (3.41)
and
[d™(x), d*(y)] = —ihcAT(y — x) = ihcA™ (x — y), (3.42)

defining the function A7 (x). From Eqgs. (3.41), (3.42) and (3.38) we obtain
the commutation relation

[d(x), Pp(y)] = ihcA(x — y) (3.43)
with A(x) defined by
+ _ —c (d3k .
A(X) =A (X) + A (X) = (z—n)—s—Jw—k sin kx. (344)

We see that A(x) is a real odd function, as required by the commutation
relation (3.43), which (like A*) satisfies the Klein-Gordon equation

(Ox + 1) Ax — y) = 0. (3.45)
The A-function (3.44) can be written
-1

2m)3

A(x) = ( Jd“k 3(k? — p?ye(ko) e "> (3.46)

! There is no generally accepted definitions of these A-functions, with different definitions
differing by constant factors, so care is required in using the literature.
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where d*k = d’k dk,, the ko-integration is over — oo < ko < ou, and &(ko) is
defined by

e(ko) =

ko {'{" 1, if ko >0 (347)

kol 1 =1, ifky<O.

The equivalence of the definitions (3.44) and (3.46) is easily established; for
example, by writing the d-function in Eq. (3.46) as

(k% — u?) = 8[k2 — (w,/c)?*] = £ [é (ko + ﬂ) + é(ko — ﬂ):l (3.48)
2w, c c
and performing the k,-integration.

The invariance of A(x) under proper Lorentz transformations (i.e.
involving neither space nor time reflections) is obvious from Eq. (3.46), since
each factor in the integrand is Lorentz-invariant [e(ko) is invariant since
proper Lorentz transformations do not interchange past and future].

The Lorentz-invariance of A(x) enables one to give a new interpretation to
the equal-time commutation relation

[¢(x, 1), ¢(y, )] = ihc A(x —y,0) =0 (3.49)
which we had earlier [Eq. (3.7)].} The invariance of A(x — y) implies that

Vole = [$(x), $(1)] = iheA(x —y) =0,  for (x — )2 <0,  (3.50)

i.e. the fields at any two points x and y with space-like separation commute.
Hence if the field is a physical observable, measurements of the fields at two
points with space-like separation must not interfere with each other. This is
known as microcausality, since for a space-like separation, however small, a
signal would have to travel with a velocity greater than the speed of light in
order to cause interference, contrary to the special theory of relativity. When
discussing the connnection between spin and statistics, at the end of Section
4.3, we shall see that the microcausality condition (3.50) is of fundamental
importance even if the field itself is not a physical observable.

A particularly useful way of representing A-functions is as contour
integrals in the complex ko-plane. The functions A*(x) are given by

-1 d*k e~ ikx
@my*

with the contours C* and C~, for A* and A~ respectively, shown in Fig. 3.1.
Performing the contour integrations, one picks up the residues from one

or other of the poles at k, = +wy/c, and Eq. (3.51) reduces to the definitions
(3.40) and (3.42) of A*(x). The function A(x), Eq. (3.44), is represented by the

A*(x) = (3.51)

et k= 2

! This also follows directly from Eq. (3.44) since for x° = 0 the integrand is an odd function of k.
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complex 4q - plane

ko= -wy/c ko=wy/c

Fig. 3.1. Contours for the integral representation (3.51) of the functions
A*(x) and A(x).

same integral (3.51) with the contour C shown in Fig. 3.1. Other A-functions
are obtained by a different choice of contour.

34 THE MESON PROPAGATOR

We shall now derive and discuss a A-function which is of great importance in
quantum field theory. Its power and utility, particularly for the development
of a systematic covariant perturbation theory, was first fully realized by
Feynman. We shall again consider the real Klein—-Gordon field.

To start with, we note that the A*-function can be written as the vacuum
expectation value of a product of two field operators. We have from Eq.
(3.41) that

ihe A*(x — x7) = 0l[¢ " (x), ¢~ (x)]10)> = <0l * (x)¢ ™ (x)|0>
= 0jp(x)$(x)I0. (3.52)
We define the time-ordered or T-product by

o(x)p(x), ift>t
o(xXNP(x), ift' >t

(t = x%¢, etc), i.e. the operators are written in chronological order with time

T{p(x)p(x)} = { (3.53)
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running from right to left: ‘earlier’ operators operate ‘first’} Using the step
function

1, ift>0
b 5
o) {0, ift <0, (3:54)

the T-product can be written

T{p(x)p(x)} = 0(t — t)P(x)p(x) + (' — DP(x)p(x).  (3.55)

The Feynman A-function A is defined by the vacuum expectation value
of this T-product:

ihe Ap(x — x7) = COIT{p(x)$(x)}10>. (3.56)
From Eqgs. (3.52) and (3.42) this leads to the explicit definition
Ap(x) = @) AT (x) — (=) A (x). (3.57a)
Thus
Ap(x) = +A%(x). ift 20. (3.57b)

We would like to be able to visualize the meaning of Ag, Eq. (3.56). For
t > ', this vacuum expectation value becomes {0|¢(x)¢(x')|0>. We can think
of this expression as representing a meson being created at x/, travelling to x,
and being annihilated at x. The corresponding expression for ¢ >t
{0l (x)p(x)|0>, admits a similar interpretation as a meson created at x,
propagating to x’ where it is absorbed. These two situations are illustrated
schematically in Fig. 3.2. The dashed lines represent the propagation of the

time time
x' x'
L »
\ 4
\ 7
\ 7
\\ //
A\ b
\ 4
\ /
\ /
\ 7
\ /
» [
X X
(@) t'<t (b)t'>¢

Fig. 3.2. The meson propagator (3.56).

* The definition (3.53) will be modified for fermions.
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time time
E— —»

nucleon nucleon

!
)
!
4
)
!
]

-
JEUPEY, Lo

X X

nucleon nucleon

(a) (b)

Fig. 3.3. Contribution from one-meson exchange to nucleon—nucleon scatter-
ing. Q) <t;(b) ¢ >t

meson in the direction of the arrow, from x’ to x or vice versa. Hence Ag, or
the vacuum expectation value (3.56), is referred to as the Feynman propagator
for the mesons of the Klein—-Gordon field. We shall, briefly, call it the meson
propagator, to distinguish it from the fermion and photon propagators to be
introduced later.

To illustrate how these propagators arise, we shall consider qualitatively
nucleon—-nucleon scattering. In this process there will be two nucleons but no
mesons present in the initial and final states (i.e. before and after the
scattering). The scattering, i.e. the interaction, corresponds to the exchange of
virtual mesons between the nucleons. The simplest such process is the one-
meson exchange, schematically illustrated in Fig. 3.3. The continuous lines
represent the nucleons, the dashed lines the mesons. As before, two situations
arise according to whether t > ¢’ or t' > t. In the actual calculation, all values
of x and x’ are integrated over, corresponding to emission and absorption of
the meson occurring at any two space—time points.

It is interesting to note that the division into the two types of process (a)
and (b) of Fig. 3.3, depending on whether ¢t > t’ or t' > ¢, is not Lorentz-
invariant for (x — x’) a space-like separation. In this case what constitutes
‘later’ and what ‘earlier’ depends on the frame of reference. On the other hand,
considering both cases together leads to the covariant Feynman propagator
(3.56), which we represent by the single diagram in Fig. 3.4. No time-ordering
is implied in this diagram and correspondingly there is no arrow on the
meson line.

We have here introduced the ideas of Feynman graphs or diagrams. We
shall deal with these fully later and shall see that they are a most useful way of
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nucleon

nucleon

Fig. 3.4. Feynman graph for the
one-meson contribution to
nucleon—nucleon scattering.

picturing the mathematics. But the reader must be warned not to take this
pictorial description of the mathematics as a literal description of a process in
space and time. For example, our naive interpretation of the meson
propagator would imply that, for (x — x') a space-like separation, the meson
travels between the two points with a speed greater than the velocity of light.
It is however possible to substantiate the above description if, instead of
considering propagation between two points x and x’, one calculates the
probability for emission and absorption in two appropriately chosen four-
dimensional regions.}

In the following we shall frequently require a representation of the meson
propagator not in coordinate but in momentum space. This is given by the
following integral representation, similar to Eq. (3.51) for A%(x):

1 [ dtkeie
Ar(x) = 5.3 f e (3.58)
F

where the contour Cg is shown in Fig. 3.5. To verify Eq. (3.58), we evaluate
the contour integral. For x° > 0, we must complete the contour Cg in the
lower half ko-plane [since exp(—ikox®) — 0 for ky — ~io0], and comparing
Eqgs. (3.58) and (3.51) we obtain Ap(x) = A*(x), in agreement with Eq.
(3.57b). For x° < 0, completion of the contour in the upper half kq-plane
similarly leads to agreement with Eq. (3.57b).

* See the article by G. Killén in Encyclopedia of Physics, vol. V, part 1, Springer, Berlin, 1958,
Section 23. An English translation of this article, entitled Quantum Electrodynamics, has been
published by Springer, New York, 1972, and by Allen & Unwin, London, 1972.
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complex 4, - plane

Fig. 3.5. The contour Cg for the meson propagator Ag,
Eq. (3.58).

Instead of deforming the contour as in Fig. 3.5, we can move the poles an
infinitesimal distance 5 off the real axis, as shown in Fig. 3.6, and perform the

ko-integration along the whole real axis, i.e. we replace Eq. (3.58) by

1 d4k e ~itx
Ap(x) = 7 J 2

1 d4k e ikx (3.59)
TRt J kP — 2 +ie ’
Im#,
A
complex A, - plane
w .
k== (22-in)
?
i
L. . .
»>— > ) >
! Re 4,
)
w
ko = ?“ -in

Fig. 3.6. Contour and displaced poles for the
meson propagator A, Eq. (3.59).
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where ¢ = 2nwy/c is a small positive number which we let tend to zero after
integration. In Eq. (3.59) integration with the respect to each of the four
variables ko, ..., k3 is along the whole real axis (— oo, o0).

The arguments of this section at once generalize to the case of the complex
scalar field, discussed in Section 3.2. The charged meson propagator is now
given by

OIT{$(x)9"(x)}10> = ihe Ap(x — x), (3.60)

where Ag(x) is the same function [Eqs. (3.57)—(3.59)] as for the real field. The
interpretation of the vacuum expectation value (3.60) in terms of the
emission, propagation and reabsorption of particles or antiparticles, depend-
ing on whether ¢’ <t or t' > ¢, is left to the reader.

PROBLEMS

3.1 From the expansion (3.8) for the real Klein-Gordon field ¢(x) derive the
following expression for the absorption operator a(k):

1 oo
= GV fd3x e (ip(x) + wyd(x)).
Hence derive the commutation relations (3.10) for the creation and anni-
hilation operators from the commutation relations (3.7) for the fields.
3.2 With the complex Klein—-Gordon fields ¢(x) and ¢'(x) expressed in terms of two
independent real Klein—Gordon fields ¢,(x) and ¢2(x) by Egs. (3.36), and with
¢.(x) expanded in the form

a(k)

¢x) =3 he” 1/2[a e ™ +al(k)e™], r=12
’ T \2Vo, r ’ ’ »

show that
1
N
Hence derive the commutation relations (3.26) from those for the real fields,
and the commutation relations (3.28) from those for (k) and al(k), r = 1, 2.

3.3 From Eg. (3.59), or otherwise, show that the Feynman A-function satisfies the
inhomogeneous Klein—-Gordon equation

(O + 1) Ap(x) = —09(x).
3.4 Derive Eq. (3.60) for the charged meson propagator, and interpret it in terms of
emission and reabsorption of particles and antiparticles.
3.5 Charge conjugation for the complex Klein—-Gordon field ¢(x) is defined by

P(x) = €€ = n.P'(x) (A)
where € is a unitary operator which leaves the vacuum invariant, €|0) = |0), and
n. is a phase factor.

Show that under the transformation (A) the Lagrangian density (3.23) is
invariant and the charge—current density (3.33) changes sign.

1
a(k) = — [ai(k) + iaz(k)], b(k)=ﬁ[a1(k)—iaz(k)]-
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Dertve
Cak)s ' =nbk)., Chk)E ! = nrak)
for the absorption operators, and hence show that
€la, k> =ntb k>,  €b,k)> = nla k>

where |a, k) denotes the state with a single a-particle of momentum k present, etc.
(% is called the charge conjugation operator. It interchanges particles and

antiparticles: a «» b. The phase 7, is arbitrary and is usually set equal to unity,

He = 1)

The parity transformation (i.e. space inversion) of the Hermitian Klein~Gordon

field ¢(x) is defined by

b(x, 1) = Po(x, NP~ = npd(—x, 1) (A)

where the parity operator 2 is a unitary operator which leaves the vacuum

invariant, 2|0> = |0, and np = =+ 1 is called the intrinsic parity of the field. Show

that the parity transformation leaves the Lagrangian density (3.5) mvanant
Show that

Py, ko k) =l -k, ~ kg, ., ~ ke

for an arbitrary n-particle state.
For any operators A and B

e*4B e~ = i (ia‘)” B,
n=0 N
where
Bo=B, B,=[4,B,_,], n=12,.
holds identically. Hence prove that
2aK)2[ ! =iak), Pak)P?;' = —inpa(—k),

where the a(k) are the annihilation operators of the field, and 2, and £, are given
by

.y

P = exp[—l —Z *(k)a(k)] P, = exp[i % e ; a*(k)a(—k)].

Hence show that the operator # = 2,2, is unitary and satisfies Eq. (A), i.e. it gives
an explicit expression for the parity operator 2.






CHAPTER 4

The Dirac field

We now wish to consider systems of particles which satisfy the Pauli
exclusion principle, i.e. which obey Fermi-—Dirac statistics, so-called fermions.
We saw in Chapter 2 that the canonical quantization formalism necessarily
leads to bosons. On the other hand, the harmonic oscillator quantization,
used in Chapter 1, allows an ad hoc modification which leads to Fermi~Dirac
statistics. This modification was first introduced in 1928 by Jordan and
Wigner and consists in replacing the commutation relations between
absorption and creation operators by anticommutation relations. We shall
develop this general formalism in Section 4.1.

In the remainder of this chapter, this formalism will be applied to the Dirac
equation, i.e. to relativistic material particles of spin 4. One of the distinctions
between bosons and fermions is that the former always have integral spin
(0, 1,...) whereas the latter must have half-integral spin (3,3,...). We shall
see that this connection between spin and statistics is an essential feature of
relativistic quantum field theory.

4.1 THE NUMBER REPRESENTATION FOR FERMIONS

In Sections 1.2.2 and 1.2.3 we derived a number representation for bosons
from the quantization of a system of independent harmonic oscillators. We
shall now modify this formalism so as to obtain a number representation for
fermions.

The essence of our earlier treatment can be stated as follows. We had
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operators q,, al,r = 1, 2, ..., satisfying the commutation relations
[a,, al] = bss, [a,, a;] = [al,al] =0, «.n

and defined operators

N, = dla,. 4.2)
It then follows from the operator identity
[4B,C] = A[B,C] + [4, C]B 4.3)
that
[Nr, as] = —d,as, [Nra ai] = 6rsa.z- (44)

The interpretation of a,, af and N, as absorption, creation and number
operators, follows from Eqgs. (4.2) and (4.4). In particular, N, has the
eigenvalues n, = 0, 1, 2, .... The vacuum state |0 is defined by

al0> =0, allr, 4.5)

and other states are built up from the vacuum state as linear superpositions of
states of the form

(af )" (af,)"...|0). (4.6)

It is a remarkable fact that there is an alternative way of deriving the
relations (4.4). Define the anticommutator of two operators A and B by

[4, B], = AB + BA. 4.7
We then have a second operator identity, analogous to (4.3),
[4B,C] = A[B,C]. —[4, C],B. 4.8)

Suppose now that the operators a,, af, r = 1, 2, ..., instead of satisfying the
commutation relations (4.1) satisfy the anticommutation relations

[ar’ al] + = 6rsa [a,, as] + = [aI; al] + = O’ (49)
in particular
@) =(a)*=0. 4.9a)

One verifies from Eqs. (4.2), (4.8) and (4.9) that for the anticommuting
operators [i.e. satisfying Eqs. (4.9)] the same commutation relations (4.4)
hold which were previously derived for the commuting operators [i.e.
satisfying Eqgs. (4.1)]. This again leads to the interpretation of a,, af and N, as
absorption, creation and number operators but, from Eqgs. (4.9), we now have

N? = dla,ala, = al(1 — ala,)a, = N,, 4.10)
whence
NAN, — 1) = 0; (4.10a)
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i.e., for the anticommuting creation and absorption operators, the number
operator N, has the eigenvalues n, = 0 and n, = 1 only, i.e. we are dealing
with Fermi-Dirac statistics.

The vacuum state |0) is again defined by Eq. (4.5). The state in which one
particle is in the state r is

1, = all0}. @.11)

For the two-particle states we have from the anticommutation relations (4.9)
that for r £ s

115> = alal|0) = —alal|0> = —|L1,) 4.12)

i.e. the state is antisymmetric under interchange of particle labels as required
for fermions. For r = s, we have

12> = (a})*10) = 0, (4.13)

thus regaining the earlier result that two particles cannot be in the same
single-particle state.

In conclusion we would like to note the fundamental difference, in spite of
their superficial similarity, in the derivation of the boson and fermion results
of this section. The boson commutation relations (4.1) are a direct conse-
quence of the canonical commutation relations of non-relativistic quantum
mechanics [compare the derivation of Eq. (1.19)]. We have no such founda-
tion for the fermion anticommutation relations (4.9).

42 THE DIRAC EQUATION

We shall now consider the classical field theory of the Dirac equation, in
preparation for going over to the quantized field theory in the next section.}
The Dirac equation describes material partjcles of spin 3. We shall see that in
the quantum field theory antiparticles again necessarily occur, e.g. for electrons
these are the positrons. Because of our later applications to quantum
electrodynamics, we shall for definiteness speak of electrons and positrons in
this chapter but the theory is equally applicable to other spin § material
particles such as nucleons.
The Dirac equation for particles of rest mass m

i ) e (ihY) + eIy

i The reader is assumed to be familiar with the elementary theory of the Dirac equation, as
discussed in, for example, L. 1. Schiff, Quantum Mechanics, 3rd edn, McGraw-Hill, New York,
1968, pp. 472-488. Further results of the Dirac theory, which will be needed later, are derived
and summarized in Appendix A.
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can be written

0y (x)

h#
Ox*

mey(x) = (4.14)
where
° =B, ¥ = Ba, i=123,
are Dirac 4 x 4 matrices which satisfy the anticommutation relations
0¥ 7] =29 (4.15)

and the Hermiticity conditions y°' = y® and y/f = —y/ for j = 1, 2, 3, which
can be combined into

Pt =0 (4.16)
Correspondingly, ¥/(x) is a spinor wavefunction with four components ,(x),
o =1,...,4. The indices labelling spinor components and matrix elements

will usually be suppressed.’ Although it is at times convenient to use a par-
ticular matrix representation this is generally not necessary. We shall for-
mulate the theory in a representation-free way and only assume that the ys,
matrices satisfy the anticommutation and Hermiticity relations (4.15) and
(4.16). This will facilitate use of the most convenient representation in a given
situation.

The adjoint field §(x) is defined by

Y(x) = ¢'(x)y° (4.18)
and satisfies the adjoint Dirac equation
z}( %) (4.19)

The Dirac equations (4.14) and (4.19) can be derived from the Lagrangian
density

& = cf(x) [ihy“ % - mc:l Y(x) (4.20)

by varying the action integral (2.11) independently with respect to the fields
. and ¥,. From Eq. (4.20) one obtains for the conjugate fields of y, and ¥,

0¥ 0¥
X = ihy], X)) = —=0. 4.21
oX) = 0. Wl o(X) o, (4.21)
! These conditions ensure the Hermiticity of the Dirac Hamiltonian
H = cy®y/(—ih 8/0x7) + mc*y°. .17
$ In case of doubt, the reader should write the indices out explicitly; e.g. Eq. (4.14) becomes
Ofrp(x)

z ity — - —mel () =0, a=1,..4 (4.14a)
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The Hamiltonian and the momentum of the Dirac field are, from Egs.
(2.51), (4.20) and (4.21), given by
.0
H= jdsmp(x) \:~ihcy’ o + mc? :\ Y(x) 4.22)

and
P= —ih jd3xw*(x)V|p(x). (4.23)

Eq. (4.22) of course also follows from the usual definition of the Hamiltonian
density (2.25) applied to the present case.

The angular momentum of the Dirac field follows similarly from Eq. (2.54).
The transformation of the field under an infinitesimal Lorentz transforma-
tion, i.e. Eq. (2.47), is in the case of the Dirac field given by

Wal0) = PYx) = Yalx) — %ewazgwﬂ(x), (4.24)

where summation over y,v=20,...,3and f = 1,..., 4 is implied, and where
o4y is the (a, B) matrix element of the 4 x 4 matrix

o = % [y~ 1. (4.252)

Eq. (4.24) is derived in Appendix A, Eq. (A.60). Eq. (2.54) now gives for the
angular momentum of the Dirac field

M= jdsxw*(x)[x A (—ihV)Jg(x) + jd3x¢*(x) <g c) Y(x), (4.26)
where the 4 x 4 matrices

o = (023,03, ¢'?) (4.25b)

are the generalizations for the Dirac theory of the 2 x 2 Pauli spin matrices.
We see that the two terms in Eq. (4.26) represent the orbital and spin angular
momenta of particles of spin .

The Lagrangian density (4.20) is invariant under the phase transformation
(241). Hence Eq. (2.42) leads to the conserved charge

Q=g Jd3x¢*(x)|p(x), 4.27)
and the charge—current density

$*(x) = (cp(x), i(x)) = cqP(x)y*P(x) (4.28)
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satisfies the continuity equation (i.e. conservation equation)
0s*

a = O
0x

(4.29)

The continuity equation also follows directly from the Dirac equations (4.14)
and (4.19).

In order to quantize the Dirac field in the next section, we shall expand it in
a complete set of solutions of the Dirac equation and then impose appropriate
anticommutation relations on the expansion coefficients. To conclude this
section, we shall therefore specify a complete orthonormal set of solutions of
the Dirac equation (4.14).

We shall again consider a cubic enclosure, of volume ¥, with periodic
boundary conditions. A complete set of plane wave states can then be defined
as follows. For each momentum p, allowed by the periodic boundary condi-
tions, and positive energy

cpo = E, = +(m?c* + c?p?)'2, (4.30)

the Dirac equation (4.14) possesses four independent solutions. These will be
written
—ipxjh eipx/h

ur(p) v vp) NI r=1,2 (4.31)

i.e. u,(p) and v,(p) are constant spinors satisfying the equations
(F—mou(p)=0, (P+mn(p)=0, r=12. (4.32)

Here we introduce the very convenient notation A (called A4 slash) which is
defined for any four-vector A, by

A =yHA,. (4.33)

Because of their time-dependence, the solutions (4.31) involving u, and v, are
referred to as positive and negative energy solutions respectively. We shall use
these terms merely as a way of labelling the u- and v-solutions. We shall not
follow up their interpretation in the single-particle theory, the resulting diffi-
culties and the reinterpretation in terms of the hole theory. We shall see that
the second quantization of the theory (i.e. when i and /' become operators)
leads directly to the interpretation in terms of particles and antiparticles
without the intellectual contortions of the hole theory.}

The two-fold degeneracies of the two positive and the two negative energy
solutions for a given momentum p result from the possible spin orientations.
For the Dirac equation only the longitudinal spin components (i.e. parallel to

* This remark is in no way meant to denigrate Dirac’s tremendous intellectual achievement of
inventing the hole theory originally.
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+p) are constants of the motion, and we shall choose these spin eigenstates

for the solutions (4.31). With

R 4
Ipl

where ¢ is defined in Eqs. (4.25a) and (4.25b), we then choose the spinors in

Egs. (4.31) so that

(4.34)

O

o (D) = (— 1) lu(p),  ou(p) = (—Dv(p), r=12. (435

The asymmetry in labelling u- and v-spinors will be convenient for labelling
the spin properties of particles and antiparticles.
We normalize the spinors u, and v, so that

E
uI(P)“r(P) = UI(p)U,(p) = ;Z_z (436)

They then satisfy the orthonormality relations

E
ul@)usp) = v/(PIs(P) = 5 brs } (4.37)

uI(p)vs( - p) =0

and the states (4.31) form a complete orthonormal set of solutions of the free-
particle Dirac equation, normalized to E,/mc? in a volume V. These and

other properties of the plane wave solutions (4.31) are discussed further in
Appendix A.

4.3 SECOND QUANTIZATION

In order to quantize the Dirac field we expand it in terms of the complete set
of plane wave states (4.31):

Y(x) = ¢ (x) + ¢ (%)
ch 1/2 . .
=2 (T/E—> Lep)udp) e~ 7" + di(p)v,(p) €P*™]  (4.38a)
rp )
and hence the conjugate field y = ¥'° has the expansion
P =P (x) + ¥ (%)
me2\1/? . . .
=2 <I7E—> [d.(p)5.(p) e~ 7" + cl(p)ia(p) €'P"]  (4.38D)
rp )

where i, = u}7°, etc. The summations in Egs. (4.38) are over the allowed
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momenta p and the spin states, labelled by r = 1, 2.! The factors (mc*/VE,)'/?
will be convenient for the subsequent interpretation of the expansion
coefficients. We have written ¢! and d for two of these, anticipating that they
will become operators on second quantization.

Eqs. (4.38) are closely analogous to the expansions of the complex Klein—
Gordon field, Egs. (3.27). However, the Dirac equation describes spin %
particles, such as electrons, which obey the Pauli principle and Fermi-Dirac
statistics. Following the treatment in Section 4.1, we shall therefore impose
the following anticommutation relations on the expansion coefficients:

Ler(p), k(@)1 + = [dn(p), AUP)]+ = brs Oy (4.39a)
and all other anticommutators vanish, i.e. with ¢, = c(p), ¢s = ci(p’), etc.:

Ler, ey =L, el]y = [dy, ds)+ = [d}, di]+ = 0}

(4.39b)
[C,, ds] + = [cra dl] + = [CI, ds] + = [CI’ dl] +=0

If we define the operators

Ni(p) = cl(p)c(p),  N:(p) = d(p)d.(p), (4.40)

the interpretation of c,, ¢/, N, and d,, d}, N, as absorption, creation and
number operators of two kinds of particles, both fermions, follows from the
anticommutation relations (4.39), analogously to the development in Section
4.1.

The vacuum state |0) is defined by

c(p)l0) =d(p)l0> =0, allpandr=1,2, (4.41)

or, equivalently, by
Y)Y = ¢ (x)0> =0, all x. (4.42)

States containing particles are generated from the vacuum state by means of
the creation operators. As in Section 4.1, one sees that these states have all
the properties characteristic of fermions [i.e. equations analogous to Eqgs.
(4.12) and (4.13) hold].

To obtain the physical properties of the particles associated with the c- and
d-operators, we express the constants of the motion in terms of them. (The
reader should be able to have a good guess at most of these properties.) In
Section 4.2, we derived expressions for the energy, momentum, angular
momentum and charge of the Dirac field [see Egs. (4.22), (4.23), (4.26) and

* We have chosen particular spin states u, and v,, but it should be clear to the reader that one
may equally well use any other orthonormal spin states. The following arguments remain valid;
only the interpretation of the spin properties of the states has to be modified.
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(4.27)]. However, these operators do not necessarily have the value zero for
the vacuum state. We found a similar situation for the Klein—-Gordon field [see
Eqgs. (3.15) and (3.16)]. As in the latter case, we automatically measure
quantities relative to the vacuum state if we redefine the expressions for the
constants of the motion with the operators ordered as normal products (i.e. in
any product, absorption operators occur to the right of creation operators)
so that vacuum values necessarily vanish.

For fermions we must modify our earlier definition of the normal product.
In arranging a product of boson operators in normal order, one treats them as
though all commutators vanish [see Eqs. (3.18) and (3.19)]. For fermion
operators, one treats them as though all anticommutators vanish, e.g. with
V. = Yu(x) and Y5 = Yp(x’), etc., one has

NWaip) = NI, + ¥ ) W5+ ¥5)]
=YYy — U dd YT Y, (4.43)
which should be compared with Eq. (3.19) for bosons. Similar results hold if
in Eq. (4.43) one or both operators are replaced by their adjoint operators, ,
or for products of more than two fields.}

With the expressions for the constants of the motion, i.e. Eqs. (4.22), (4.23)
and (4.26)—4.28), modified to be normal products, e.g.

.. .0
H= Jd3x N{Jz’(x)[—lhcy’ Fis mc2:| w(x)}, (4.22a)
etc., we substitute the expansions (4.38) for ¥ and . Using the ortho-
normality properties of the single-particle states (4.31) and, in the calculation
of H, that they are solutions of the Dirac equation, we obtain for the
energy, momentum and charge operators

H =Y E[N,p) + N.(p)] (4.44)
P =Y p[N.p) + N.(p)] (4.45)
Q=—eY [N.p) — N(p)]. (4.46)

* The fermion operators y and § are non-commuting quantities not only through their
dependence on the absorption and creation operators but also as four-component spinors.
Hence care is required in changing the order of operators; e.g. if O is a 4 x 4 matrix (such as a
product of y-matrices) then

NWOY) = ¥, Ouphy — V5 Oaphs” + Wz Oupths + Y5 Ouply (4.432)

i.e. suppressing the spinor indices the second term on the right-hand sideis —y O™ *, where OT
is the transposed matrix: O, = O,4. In case of doubt, the reader should write the spinor indices
out explicitly.
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In the last equation we have taken the parameter g to be the charge of the
electron: g = —e < 0. Hence identifying the mass m in the Dirac equation
with the mass of the electron, we can interpret the particles associated with
the ¢- and d-operators as electrons and positrons, respectively.

To identify the spin properties, we calculate the spin angular momentum in
the states cf(p)|0> and d}(p)|0), containing one electron or one positron of
momentum p. From Eqs. (4.26) and (4.34) we define the longitudinal spin
operator, i.e. in the direction of motion p, by

S, = g Jd3xN[W(x)ap|p(x)]. 447

It is left to the reader to verify that

h
S,clmI0d = (— 1! 2 cl(miod,

SAPI0 = (- D a0y, r=1,2, “43)

We see from Eqs. (4.48) that in both the electron state ¢}(p)|0> and the
positron state d;(p)|0)> the spin component in the direction of motion has the
value +#/2 for r = 1, and the value —#/2 for r = 2. We refer to these two spin
states, i.e. spin parallel and antiparallel to the direction of motion, as having
positive (right-handed) and negative (left-handed) helicity respectively.
(Right- and left-handed here specifies the screw sense of the spin in the
direction of motion.) We shall call S, the helicity operator of a spin J particle
(whether electron or positron) with momentum p.

It follows from Eqs. (4.44)—(4.46) and (4.48) that, as for the complex Klein-
Gordon field, the theory is completely symmetric between particles
(electrons) and antiparticles (positrons). These have the same properties
except for the reversal of the sign of the electric charge. (As a result other
electromagnetic properties such as the magnetic moments have opposite
signs.)

The symmetry of the theory between particles and antiparticles is not
obvious from the expansions of the field operators  and ¥, Eqs. (4.38). This
is due to the fact that we have not chosen a specific spinor representation and
in most representations the positive and negative energy spinors will look
very different. The expansions (4.38) only manifest the particle-antiparticle
symmetry for representations of a particular kind, known as Majorana
representations. Labelling the y-matrices in a Majorana representation with
the subscript M, the defining property of a Majorana representation is that

Y = — v u=0,...,3, (4.49)

where the asterisk denotes complex conjugation, i.e. all four y-matrices are
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pure imaginary. A particular Majorana representation is given in Appendix
A, Eqgs. (A.79). Here we only require the defining property (4.49).
We see from Eq. (4.49) that in a Majorana representation the operator

. 0
<1hm Pl mc)

is real. Hence if y is a solution of the Dirac equation in a Majorana
representation, so is its complex conjugate i/%. It follows that if we denote the
positive energy solutions (4.31) by
e—ipx/h
qu(p) 7’ r= 1, 2, (4508)
in a Majorana representation, then the corresponding negative energy
solutions are ,
ipx/h

ubs,(p) —?V’ r=12. (4.50b)
Hence the expansions (4.38) become, in aMajorana representation,
2

mc?\ 1/ _ .
=2 (VE ) [edPum(p) ™7 + dl(pyusy (p) €7"]
P

p

(4.51)

mc? \1/? . .
Yh(x) =% (VE ) [d(P)umr(P) €™ '7*" + cl(Puds,(p) €]
rp P

In the last equation we gave the expansion for ¢/, rather than i, to bring out
the complete symmetry between particles and antiparticles. The absorption
operators ¢,(p) and d,(p) are multiplied by the same single-particle wavefunc-
tions and thus are absorption operators of particles and antiparticles in the
same single-particle state, i.e. with the same momentum, energy and helicity.
The same is true of the creation operators. Having used a Majorana
representation to manifest the particle-antiparticle symmetry of the field
operators, we shall now revert to the representation-free formulation of Eqs.
(4.31) and (4.38) in which this symmetry is masked.

The anticommutation relations (4.39) for the creation and absorption
operators imply anticommutation relations for the Dirac field operators
and . From Eqs. (4.39) and the expansions (4.38) of the fields, one obtains

[¥a(x), s(1)]+ = [Palx), P5(1)]+ = 0, (4.52a)
- . @
[z (), g5 (1] = ‘(’V“W + m%)ﬁ A% (x — y) (4.52b)

where A*(x) are the invariant A-functions introduced for the Klein-
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Gordon equation, Eqgs. (3.40) and (3.42). Egs. (4.52a) are obvious. The
derivation of Egs. (4.52b) is left as an exercise for the reader.

Onmitting suffixes, i.e. considered as a 4 x 4 matrix equation, we can write
Eqgs. (4.52b) as

=), ¥ (1)) = iS*(x — y) (4.53a)
where the 4 x 4 matrix functions S*(x) are defined by
., 0
St(x) = (1)} T )Ai(x) (4.54a)
From the last two equations
L), g ()]s =iS(x — y) (4.53b)
where, analogously to A(x) = A*(x) + A7(x), we defined
_ 0
Sx)=8"(x) + S (x) = <1y F + —) A(x). (4.54b)

From the representations of the various A-functions, obtained in Chapter
3, Egs. (4.54) provide representations of the corresponding S-functions. For
example, from the integral representation (3.51) for A*(x), we can write Egs.
(4.54a) as

—h . P+ me
Si = d4 —ipxjh s X
) (2mh)* L+ pe p? — m?c? (4.552)

where the contours C* in the complex po-plane are anticlockwise closed
paths enclosing the poles at p, = +(E,/c), corresponding to Fig. 3.1 for the
complex ko( = po/c)-plane. Since

(¢ + me)(P F mc) = p? — m*c?, (4.56)
the last equation is often abbreviated into the symbolic form

S*(x) = =R g, e (4.55b)
(2rh)* Je* P— me

We conclude this section with a brief discussion on the connection between
spin and statistics of particles. In this section we quantized the Dirac equation
according to the anticommutation relations (4.39) in order to obtain Fermi-
Dirac statistics for electrons. It is interesting to ask what the consequences
would be if we quantize the Dirac equation according to Bose-Einstein
statistics, i.e. by replacing all the anticommutators in Egs. (4.39) by
commutators. With this change, the energy of the field, again calculated from
Eq. (4.22a), is not given by Eq. (4.44) but by

H =3} E,[NAp) — N(p)]- (4.56)
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We are now dealing with Bose-Einstein statistics, and the occupation
number operators N,(p) and N,(p) can take on all values 0, 1, 2, ... Hence the
Hamiltonian (4.56) does not possess a lower bound. If we demand the
existence of a state of lowest energy (i.e. a stable ground state), we must
quantize the Dirac equation according to Fermi-Dirac statistics.

One may similarly ask what the consequences are of quantizing the Klein—-
Gordon field according to Fermi-Dirac statistics. In Section 3.3 we referred
to microcausality, i.e. the requirement that two observables A(x) and B(y)
must be compatible if (x — y) is a space-like interval, i.e.

[A(x), B(y)] =0, for (x —y)* <O. 4.57)

We have seen that the observables of the fields, such as the energy-
momentum densities or the charge—current densities, are bilinear in the field
operators [see, for example, Egs. (3.13), (3.14), (3.33), (4.22), (4.23) and
(4.28)]. Using the operator identities (4.3) and (4.8), one can show that for Eq.
(4.57) to hold for such bilinear observables, the fields themselves must either
commute or anticommute for (x — y) a space-like interval. For the real
Klein—~Gordon field we must have either

[4(x), d(»)] =0, for (x —y)* <0,

or

[¢(x), d(y)]+ =0, for (x — y)* < 0.

We know that the first of these relations holds if the Klein—Gordon field is
quantized according to Bose-FEinstein statistics [compare Eq. (3.50)]. It is
easy to show that neither relation holds if we quantize according to Fermi-
Dirac statistics, i.e. replace the commutators by anticommutators in the
commutation relations (3.10). Hence, the requirement of microcausality
forces us to quantize the Klein-Gordon field according to Bose—Einstein
statistics.

These conclusions generalize to interacting particles and other spin values.
Particles with integral spin must be quantized according to Bose-Einstein
statistics, particles with half-integral spin according to Fermi-Dirac statistics.
The ‘wrong’ spin-statistics connections lead to the two types of difficulties we
found above. This spin-statistics theorem, to which no exception is known in
nature, represents an impressive success for relativistic quantum field theory.

44 THE FERMION PROPAGATOR

In Section 3.4 we introduced the meson propagator. Corresponding to Eq.
(3.56), we now define the Feynman fermion propagator as

OIT{Y(x)P(x")}10> (4.58)
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where spinor indices have again been suppressed. For fermion fields, the time-
ordered product is defined by

T W (XD} = 0 — VW) — 0 — P (X W (x)
765076 NS E 4 (4.59)
- {—.p(x').p(x), ift' >t
(where t = x%/c, etc.). This definition differs by a factor (— 1) in the ¢ > t term
from the corresponding boson definition, Eqgs. (3.53) and (3.55). This change
in sign reflects the anticommutation property of fermion fields. (A similar
difference occurred in the definition of the normal products of boson and
fermion fields.)

In order to calculate the fermion propagator (4.58), using Eq. (4.59), we
note that

Ol G (x)I0Y = <Ol * g~ (x)I0)
=0y * (%), §~(x)]+10) = iS*(x — x'), (4.60a)
where we used Eq. (4.53a); similarly

O W0 = iS™(x — x). (4.60b)
Combining Egs. (4.58)—(4.60), we obtain the fermion propagator:
COIT{Y I (D}0) = iSe(x — x') (4.61)

where Sg(x) is defined, analogously to Eqgs. (3.57) and (4.54), by

mc

SE(x) = 0B)S T (x) — (=S (x) = (iy“ 9 + > Ap(x). (4.62)

ox*  h
Corresponding to the integral representation (3.59) for Ag(x), Sg(x) can be
written

h . P+ me
S =— | d4peipxh__ ¥ " |
) = G J L R e

4.63)
where the integration in the complex py-plane is along the whole real axis:
— o0 < pp < 0. (Compare Fig. 3.6.)

As for the meson propagator, it is useful to visualize the fermion
propagator in terms of Feynman diagrams. (As mentioned before, one must
not take this interpretation too literally.)

For t' < t, the contribution to the fermion propagator (4.61) stems from
the term (4.60a) and thus leads to the interpretation of (4.61) as creation of an
electron at x’, its propagation to x and its annihilation at x. On the other
hand for t < ¢, the contribution to (4.61) comes from (4.60b) and is pictured
as the emission of a positron at x, and its propagation to x’ where it is
annihilated. The two cases are illustrated in Fig. 4.1. Note that in both
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time time

(a) (b)

Fig. 4.1. (a) ¢’ < t: electron propagated from x’ to x;
(b) t' > t: positron propagated from x to x'.

diagrams the arrow on the fermion line points from the vertex associated with
the J-field (x’) to the vertex associated with the y-field (x), i.e. the arrow runs
in the same direction as time for electrons, in the opposite direction for
positrons.

These ideas are illustrated in Fig. 4.2, which shows two of the leading
contributions, in lowest order of perturbation theory, to Compton scattering
by electrons. Fig. 4.2(a) represents an electron propagating in the direction of
the arrow on the fermion line, emitting the final photon at the vertex x’ and
absorbing the initial photon at x. Fig. 4.2(b) represents the corresponding

Time Time

Inthol Initial
photon photon

: Final
Final electron

electron

Final

initial Final
electron photon Initial photon
electron

(a) t'<? (b) 7'>7¢

Fig. 4.2. Contributions to Compton scattering: time-ordered graphs.
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Initial Final
photon electran
x
4
'

x
Initial Final
electron photon

Fig. 4.3. Contribution to Compton scat-
tering: Feynman graph corresponding to
the time-ordered graphs of Fig. 4.2.

process for ¢t < ¢'. The initial photon is annihilated at x, creating an electron—
positron pair, i.e. the final electron and a positron which propagates to x’
where it annihilates with the initial electron to produce the final-state photon.
Note that the arrow is always in the same sense along a fermion line, and in
both diagrams is from the x’-vertex (associated with the i operator) to the x-
vertex (associated with ¥) on the internal fermion line. Thus the two
diagrams are topologically equivalent, i.e. they can be continuously deformed
into each other.

The fermion propagator (4.61) includes both the contributions from Figs.
4.2(a) and (b), and we represent it by the single Feynman diagram in Fig. 4.3,
in which no time ordering of the vertices x and x’ is implied, and consequently
no time direction is attached to the internal fermion line joining x’ and x. The
orientation of the line x’x is of no significance in this diagram. However, we
shall continue to interpret external lines (i.e. lines entering or leaving a dia-
gram from outside) in the same way for Feynman graphs as for time-ordered
graphs. A line entering a diagram from the left-hand side will be interpreted
as a particle present initially, one leaving a diagram on the right-hand side as
one present finally. With these conventions, Figs. 4.4(a) and (b) represent
Compton scattering by electrons and positrons, without further labelling
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~
/

y
(a) (b)

Fig. 4.4. Compton scattering: (a) by electrons; (b) by positrons.

being necessary. The arrows on the fermion lines are required to distinguish
electrons (arrows on external lines from left to right) from positrons (arrows
on external lines from right to left). Although no arrows are required on the
photon lines, we shall at times use arrows on external photon lines to
emphasize initially and finally present quanta. In the following we shall
frequently use such Feynman diagrams.

#§ [THE ELECTROMAGNETIC INTERACTION]AND GAUGE
INVARIANCE

T

magnetic field, sRemﬁed by the scalar and vector potentials ¢(x) and A(x). For
this purpose we shall take over the procedure which is successful in non-
relativistic quantum mechanics. In the latter case, making the substitution

il inl b, —ihV o —itv —TAr),  (ea)
ot ot c
in the free-particle Schrodinger equation leads to the correct wave equation
for a particle of chargq'q)in this field. [The corresponding classical result is
contained in Eq. (1.59).
The substitution (4.64a) is usually referred to as the ‘minimal substitution’.
In terms of the four-vector potential A“(x) (¢ A), the minimal substitution

takes the explicitly covariant form

0, = 2, [a +—— ,.(x)] (4.64b)

ox#
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We shall assume that this substitution also correctly introduces the electro-
magnetic interaction into the Dirac equation. With the replacement (4.64b),
and g = —e for electrons, the Dirac equation (4.14) and the Lagrangian
density (4.20) become

(1" 8, — meW(x) = == AN, (465)
and ~ o
& ; jix_})-(?)l D, mc)lp(x)} (4.66)
where %, is the Lagrangian density of the free Dirac field, i.e.
Lo = cP(x)(iby* 0, — me)Y(x), 4.67)
and %, is the interaction Lagrangian density
Z1 = ef(x)yY(x)A,(x), (4.68)

which couples the conserved current s*(x) = c(—e)Jy*y, Eq. (4.28), to the
electromagnetic field.

To obtain the complete Lagrangian density for electrodynamics, we must
add to Eq. (4.66) the Lagrangian density #,,4 of the radiation field, i.e. of the
electromagnetic field in the absence of charges. This division is analogous to
that of the Hamiltonian in Chapter 1, Egs. (1.61)—(1.63). #,,4 depends on the
potential 4,(x) only, and we shall study it in the next chapter.

We know that it is only the electromagnetic fields E and B which have
physical significance, not the potential A4, itself, i.e. the theory must be
invariant under the gauge transformations of the potentials, Eqgs. (1.3). The
latter can be written in the covariant form

Ay (x) = A (x) = Au(x) + 8,f(x) (4.69a)

where f(x) is an arbitrary function. The invariance of the theory under gauge
transformations follows from that of the Lagrangian density. #;,4 has this
invariance property as we shall see in the next chapter. However, applying
(4.69a) to Eq. (4.66), we obtain

L~ L =L+ eJ()yY(x) 3 () (4.70)

ie. & is not gauge-invariant with respect to (4.69a). We can restore gauge
invariance by demanding that coupled with the gauge transformation (4.69a)
of the electromagnetic potentials, the Dirac fields transform according to

Y(x) = P(x) = Y(x) eleforhe }

4.69b
'p(x) - lp’(x) = lﬁ(x) e~ ief(x)he ( )
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Under the coupled transformations (4.69a) and (4.69b), the Lagrangian
densities (4.67) and (4.68) transform according to

Lo Lo = Lo — ef(x)y"Y(x) 0,1 (x) 4.71a)
B - L= L1+ e (xXMP(x) 0,1 (x). (4.71b)

Consequently ¥ = ¥, + %, remains invariant under the coupled trans-
formations.

Eqs. (4.69b) are called a local phase transformation since the phase factors
depend on x. In the special case that f(x) = const., Eqs. (4.69b) reduce to a
global phase transformation, considered in Section 2.4 where we saw that
invariance under a global phase transformation leads to a conserved charge.
We have now seen that gauge invariance of the theory requires invariance
when simultaneously transforming the electromagnetic potentials according
to the gauge transformation (4.69a) and the Dirac fields according to the
local phase transformation (4.69b), and we shall in future refer to these
coupled transformations as gauge transformations. It can be shown that the
application of Noether’s theorem to the invariance with respect to these
(coupled) gauge transformations does not lead to a new conservation law,
but only reproduces the conservation of charge.

In what follows we shall assume that Eq. (4.68) gives the correct interaction
of quantum electrodynamics. One could try and add other gauge-invariant
and Lorentz-invariant local interaction terms, but these are generally excluded
by another general restriction—renormalizability of the theory—which we
shall study in Chapter 9. The ultimate justification for taking Eq. (4.68) as the
correct interaction lies, of course, in the complete agreement between some of
physics’ most precise experiments and theoretical predictions based on this
interaction.

PROBLEMS
4.1 From Eq. (4.53b), or otherwise, derive the equal-time anticommutation relation

L), TN s hxg =y = 7° 3(x — ¥).

4.2 Show that the functions S(x) and Sg(x) are solutions of the homogeneous Dirac
equation and of an inhomogeneous Dirac equation respectively.
4.3 Show that the charge—current density operator

$#(x) = —ec(x)y"i(x)
of the Dirac equation satisfies the relation
[s"(x),s"(»)1 =0, for (x —y)* <0.

This relation shows that the charge—current densities, which are observable
quantities, at two different space--time points x and y, are compatible provided
the interval (x — y) is space-like, as required by microcausality.
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4.4 Show that if in the expansion (3.8) of the real Klein~Gordon field ¢(x) we impose
the anticommutation relations

[a(k), a'(K)]+ = b,  [a(k), ak)]+ = [a'(K), a'(k))]+ =0,

then for (x — y) a space-like interval:

[o(x), #(¥)]1#0 and [¢(x), d(y)]+ # 0.

[We know from the discussion at the end of Section 4.3 that either the
commutator or the anticommutator of ¢(x) and ¢(y) must vanish for (x — y)
space-like, if the bilinear observables constructed from ¢ are to satisfy the
microcausality condition (4.57).]

4.5 For a Dirac field, the transformations

Y(x) > ¥'(x) = exp (eys)f(x),  Y'(x) = Y"(x) = ¢'(x) exp (—iays),

where o is an arbitrary real parameter, are called chiral phase transformations.
Show that the Lagrangian density (4.20) is invariant under chiral phase

transformations in the zero-mass limit m = 0 only, and that the corresponding

conserved current in this limit is the axial vector current J4(x) = ¥/(x)y*yst(x).
Deduce the equations of motion for the fields

Yux) = 31— ps(x),  ¥wr(x) =K1+ vs)(x)

for non-vanishing mass, and show that they decouple in the limit m = 0. Hence
show that the Lagrangian density

Z(x) = ihcfu(x)y* 0L (x)

describes zero-mass fermions with negative helicity only, and zero-mass anti-
fermions with positive helicity only. (This field is called the Weyl field and can be
used to describe the neutrinos in weak interactions if they have zero mass.)



CHAPTER b

Photons:[covariant theory|

In our discussion of the electromagnetic field in Chapter 1, we saw that only
the transverse radiation field corresponds to independent dynamical degrees
of freedom, and we only quantized this transverse field. On the other hand,
the instantaneous Coulomb interaction between charges is fully determined
by the charge distribution and, in the formulation of Chapter 1, is treated as a
classical potential. This formulation of quantum electrodynamics is closely
related to the classical theory and so facilitates interpretation in familiar
terms. However, the decomposition of the fields into transverse and
longitudinal components is clearly frame-dependent and so hides the Lorentz-
invariance of the theory.

An explicitly Lorentz-covaniant formulation of the theory is essential for a
complete development of quantum electrodynamics. This is required to
establish the renormalizability of the theory, i.e. the possibility of carrying out
calculations to all orders of perturbation theory with finite self-consistent
results, and it is very helpful in practice in calculating such higher-order
radiative corrections.

We shall therefore in this chapter develop a covariant theory starting, in
Section 5.1, from an explicitly covariant formulation of classical electrodyna-
mics 1n which all four components of the four-vector potential A*(x) = (¢, A)
are_treated on_an equal footing. This corresponds to introducing more
dynamical degrees of freedom than the system possesses and these will later
have to be removed by imposing suitable constraints.

The quantized theory, derived in Section 5.2 by quantizing all four
components of the four-vector potential A#(x), looks on the face of it very
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different from the theory of Chapter 1. However, the two formulations are
equivalent, as we shall illustrate when discussing the photon propagator in
Section 5.3.

54 [THE CLASSICAL FIELDS |

To express Maxwell’'s equations in covariant form, we introduce the
antisymmetric field tensor

vy—-0 1 2 3

0 E E E
~E, 0 B, -—B,
-E, —B, 0 B,
—-E. B, -B, O 3

In terms of F*' and the charge-current density s*(x) == (cp(x), j(x)),
Maxwell’s equations (1.1) become

F™(x) = 5.1

N = Oe—T

0,F"¥(x) = l s“(x) 5.2)

O*F*(x) + O*F" (x) + O"F*(x) = 0. (5.3
Since F** is antisymmetric, Eq. (5.2) at once gives
d,8%(x) = 0, 5.4

ie. consistency requires conservation of the current to which the electromag-
netic field is coupled.
The field F** can be expressed in terms of the four-vector potential A*(x) =
(¢, A) by
F*(x) = 0" A*(x) — *A"(x) (5.5)

which is identical with Eqgs. (1.2). In terms of the potentials, Eqs. (5.3) are
satisfied identically, and Eqs. (5.2) become

DAA(x) — 42 A'(x) = £ (). (5.6)

These equations are Lorentz-covariant, and they are also invariant under the
gauge transformation

A¥(x) = AM(x) = A¥(x) + O*f(x). 5.7
The field equations (5.6) can be derived from the Lagrangian density

K = —LF,(x)F*(x) — - Su(x)A*(x) | (5.8)
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by treating the four components A”(x) as the independent fields in the
variational principle (2.11)-(2.14). The form of this Lagrangian density
ensures the correct behaviour of the field equations (5.6) under Lorentz and
gauge transformatxons*

'Unfortunately, t the Lagranglan density (5.8) is not suitable for carrying out

the canonical quantlzatlon Eq. (5.8) leads to the conjugate fields

0F 1
n“(x) = H = —— F“O(x).
u

The antisymmetry of F*' then implies 7°%x) =0, and this is plainly
incompatible with the canonical commutation relations (2.31) which we wish
Jo impose.

¢ A Lagrangian density which is suitable for quantization, first proposed by
Fermi, is

1 .
& = —50,4,(x)(0" A*(x)) — ;Su(x)A“(x). (5:10)
From Eq. (5.10) one obtains the conjugate fields
0¥ 1 .
ot =T = — Lt .
m*(x) 34, s A*(x) (5.11)

which are now all non-vanishing so that the canonical quantization
formalism can be applied.
The Lagrangian density (5.10) leads to the field equations

l:lA“(x) 1S“(x) (5.12)

Comparison with Eqs. (5.6) shows that Eqgs. (5 12) are only equivalent to
Maxwell’s equations if the potential 4%(x) satisfies the constraint

2uA¥(x) = 0, / (5.13)

Hence to carry out the quantization but end up with Maxwell’s equations,
we must in the first place quantize the theory for the general Lagrangian
density (5.10), ignoring the constraint (5.13), and after quantization impose
Eq. (5. 3) or an equlvalent constramt as a subsidiary condition. We shail
consider this point in detail in the next section.

+ & is clearly Lorentz-invariant. Under the gauge transformation (5.7)
1 1
L > L —-—5(x)f(x)= &L — p s ()], (5.9)
c
£
on account of current conservation. Although % is not invariant, it follows from Egs. (2.t1)-

(2.14) that adding a four-divergence to the Lagrangian density does not alter the field equations,
i.e. their gauge invariance is ensured by the form of #. (See Problem 2.1.)
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In the classical theory, starting from potentials A*(x) in an arbitrary gauge,
we can always perform a gauge transformation (5.7) so that the transformed
potentials A"*(x) satisfy the subsidiary condition (5.13). We achieve this by
choosing the function f(x) in Eq. (5.7) as a solution of

0,A*(x) + Of(x) = 0. (5.14)

The subsidiary condition (5.13) does not specify the potentials uniquely. If
the potentials A*(x) satisfy Eq. (5.13), so will any potentials A"*(x) obtained
by the gauge transformation (5.7), provided the gauge function f(x) satisfies

Of(x) = 0. (5.15)

The subsidiary condition (5.13) is called the Lorentz condition. Its
imposition represents a restriction on the choice of gauge. Any gauge in-
which Eq. (5.13) holds is called a Lorentz guage.

U/sm;g Lorentz gauge has some important advantages. Firstly, the
Lorentz condition (5.13) is a Lorentz-covariant constraint. This is in contrast
to the condition for the Coulomb gauge, Eq. (1.6),

V-A=0,

which decomposes fields into transverse and longitudinal components and so
is manifestly frame-dependent. Secondly, the field equations (5.12) in a
Lorentz gauge are much simpler than the corresponding Eqs. (5.6) in a
general gauge. In particular, in the free field case (s*(x) = 0) Eqs. (5.12)
reduce to

[}A“(x) =0. (5.16)

Eq. (5.16) is the limit of the Klein—Gordon equation (3.3) for particles with
mass zero. This will enable us to adapt many of our earlier results when
considering the covariant quantization of the electromagnetic field.

Eq. (5.16) enables us to expand the free electromagnetic field 4%(x) in a
complete set of solutions of the wave equation, in close analogy to the
expansion (3.8) for the Klein-Gordon field:

A¥(x) = A**(x) + A* 7 (X) (5.16a)
where
u+ hcz 1z ) k k —ikx 1
AT (x) = ;(21/%) g(k)a (k) e (5.16b)
and
e he? \172 stk ok
A* T (x) = ;(ka) e*(k)aj(k) e**. (5.16¢)

The summations in these equations are over wave vectors k allowed by the
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periodic boundary conditions, and

1
K= o=k, (.17

The summation over r, from r = 0 to r = 3, corresponds to the fact that for
the four-vector field A*(x) there exist, for each k, four linearly independent
polarization states. These are described by the polarization vectors &(k),
r=0,...,3, which we choose to be real, and which satisfy the orthonormality
and completeness relations

ek)eg(k) = e (K)ef(k) = ~{, 65, 1,5=0,...,3, (5.18)
z Crsf(k)fi:(k) = _guv’ (519)

where '
fo=—1, G=0L=0G=1 (5-20)

The classical potentials A*(x), u=0,...,3, are of course real quantities.
Anticipating their interpretation in the quantized theory as operators, we
have denoted the expansion coefficients in Egs. (5.16) by a, and a.

Eqgs. (5.16) should be compared with Egs. (1.38). The latter expand the
radiation field in terms of two transverse polarization states for each value of
k and, in addition, we had the instantaneous Coulomb interaction between
charges. Eqgs. (5.16) give an expansion of the total field A*(x) in terms of four
polarization states for each value of k. We shall see in Section 5.3 that the
two extra polarization states provide a covariant description of the instan-
taneous Coulomb interaction.

For many purposes one only requires the properties (5.18) and (5.19) of the
polarization vectors. However a specific choice of polarization vectors in one
given frame of reference often facilitates the interpretation. We shall choose
these vectors as

eh(k) =n*=(1,0,0,0), (5.21a)

gk) = (0,g(k)), r=123, (5.21b)

where £;(k) and £,(k) are mutually orthogonal unit vectors which are also
orthogonal to k, and
e3(k) = k/k|, (5.22a)
Le.
kg(k)y=0, r=1,2; ek) e4k) =0d,, r,s=1,2,3. (522b)

¢} and ¢4 are called transverse, £ longitudinal polarizations, and &f scalar
or time-like polarization.
For later use we noge that £4(k) can be written in the covariant form

k* — (kn)n*

eh(k) = [(an51 = kz]l/i'

(5.22¢)
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This expression comes about since (km)n* subtracts off thc time-like
component of k*, and the denominator makes ¢4 a space-like unit vector. We
have not set k? = 0 in Eq. (5.22¢), as it would be for a real photon, since we
shall later require the more general case k2 # 0.

Real polarization vectors correspond to linear polarization. To describe
circular or elliptic polarization would require complex polarization vectors
and corresponding modifications of Eqs. (5.18) and (5.19).

52 COVARIANT QUANTIZATION

We now apply the canonical formalism of Chapter 2 to quantize the free
electromagnetic field, using the Lagrangian density (5.10) with s,(x) = 0 and,
in the first place, ignoring the Lorentz condition (5.13). With the fields n#(x)
conjugate to A,(x) given by Eqs. (5.11), the equal-time commutation
relations (2.31) become

[A%(x, 1), A(X, )] =0, [A¥x,1), A'(X, )] = 0,}

. 5.23)
[4#(x, 1), A" (X, 1)] = —ihc?g"” o(x — X') (

Apart from the factor (—g"’), these equations are identical with the
commutation relations (3.7) of four independent Klein—-Gordon fields, and
each component 4*(x) satisfies the wave equation (5.16) which is the limit of
the Klein—Gordon equation (3.3) for particles of mass zero. [Both these
points can be appreciated by comparing the Lagrangian densities (5.10) and
(3.5).] This similarity enables us to take over earlier mathematical results
although their physical interpretation will have to be re-examined taking into
account the factor (—g*").

In Section 3.3, we derived the covariant commutation relations (3.43) for
the Klein—Gordon field. From these we can at once write down the covariant
commutation relations for the 4*(x):

[4*(x), A¥(X')] = ihcD*™(x — X'), (5.24)
where

D*(x) = lim [—g** A(x)], (5.25)
m—0

and A(x) is the invariant A-function (3.44).
The Feynman photon propagator is similarly given by
OIT{A*(x)A*(x")}|0> = iheDE(x — X), (5.26)

_guv d4k e—ikx
@n* ) kK2 +ie

where

DE(x) = lin}) [—9" Ar(x)] = ’ (5.27)
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as is seen from Eqgs. (3.56) and (3.59). The photon propagator will be
discussed fully in the next section.

To gain the photon interpretation of the quantized fields, we substitute the
field expansions (5.16) in the commutation relations (5.23), with the result

[ar(k)’ aI(kl)] = Cr 6rs 6kk’
[ar(k)’ as(k()] = [aI(k)’ a;(kl)] = O}

From Eq. (5.20) {, = 1 for r = 1, 2, 3, s0 that for these values of r Eqs. (5.28)
are the standard boson commutation relations (3.10) leading to the usual
number representation for transverse photons (r = 1,2) and longitudinal
photons (r = 3). For r = 0 (scalar photons) {, = —1, and it consequently
looks as though the usual roles of absorption and creation operators must be
interchanged for ao(k) and al(k). However, effecting only this change results
in other difficulties, and the standard formalism must be modified more
radically. Of the several procedures available, we shall follow that due to
Gupta and to Bleuler.

In the Gupta-Bleuler theory, the operators a/k), r = 1,2,3 and 0, are
interpreted as absorption operators, af(k), r =1,2,3 and 0, as creation
operators for transverse, longitudinal and scalar photons. The vacuum state
|0) is defined as the state in which there are no photons of any kind present,
ie.

(5.28)

a/(k)|0> =0, allk, r=20,...,3, (5.29a)
or, equivalently,
A* (00> =0, all x, u=0,..3. (5.29b)
The operators al(k) operating on the vacuum state [0) create the one-photon
states
> = al(k)|0) (5.30

in which one transverse (r = 1, 2), longitudinal (r = 3) or scalar (r = 0)
photon of momentum k is present.

To justify this interpretation of the operators a, and af, we consider the
Hamiltonian operator of the field. From Eq. (2.51a) this is given by

H= Jd3xN[n“(x)/iu(x) — 2(x)], (5.31)
which, as usual, is to be taken as a normal product. On substituting the free
Lagrangian density corresponding to Eq. (5.10), Eq. (5.11) for =*(x) and the
expansions (5.16) for the fields, Eq. (5.31) becomes

H= }; hal(K)a (k). (5.32)
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Despite the minus sign ({, = — 1) associated with the scalar photons in Eq.
(5.32), this energy is positive definite. For example, for the one-photon states
(5.30) one easily obtains, using the commutation relations (5.28),

Hllkr> = z hqusas(q)as(q)aT(k)|O>

= hoal(k)|0>, r=0,...,3,

i.e. the energy has the positive value Aw, for transverse, longitudinal and
scalar photons. Correspondingly, we must define the number operators by

N.(k) = {,al(k)a,(k), (5.33)

and these definitions, together with the commutation relations (5.28), tead to
consistent number representations for all types of photons.

Although the formalism, as far as we have developed it, seems satisfactory,
there are some difficulties which show up if we calculate the normalization of
photon states. For example, the norm of the state (5.30) is

(Ll = <0la,(k)al(k)|0> = (<00 = ¢,

(if we normatize |0)> to {0|0> = 1), and for a scalar photon this norm is
negative. More generally, one can show that for any state containing an odd
number of scalar photons the norm is negative. At first sight this looks like a
serious difficulty, since the probability interpretation of quantum mechanics
depends on states having positive norms. However, no scalar or longitudinal
photons have ever been observed. Both t| these - points : are related to the fact
that so far we have ignored the Lorentz COl’ldlthn (5.13), so that our theory 18
not yet equxvalent to Maxwell’s equations. We must now try and impose the
Lorentz condition.

Unfortunately, we cannot simply take the Lorentz condition (5.13) as an
operator identity. Eq. (5.13) is incompatible with the commutation relations
(5.24), since

[0,4%(x), A*(X')] = thc0,D*(x — x')

and this is not identically zero.
This problem was resolved by Gupta and Bleuler by replacing the Lorentz
condition (5.13) by the weaker condition®

8,4"* (x)|¥> =0, (5.34)

involving absorption operators only. Eq. (5.34) is a restriction on the . -
states which are allowed by the theory. From Eq. (5.34) and its adjoint

(W|0,4* " (x) =
it follows that the Lorentz condition holds for expectation values:

(P|3,AM X)W = (W|0,4"* (x) + 8,A* " (X)|¥) = 0. (5.35)
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This ensures that the Lorentz condition and hence Maxwell’s equations hold
as the classical limit of this theory.

In order to understand the meaning of the subsidiary condition (5.34), we
express it in momentum space. On substituting Eqgs. (5.16b) and (5.21), (5.22)
for A;(x) and ¢/(k), we obtain the conditions

[as(k) — ao(k)]|¥) =0, all k. (5.36) ?

This is a constraint on the linear combinations of longitudinal and scalar
photons, for each value of k, that may be present in a state. It [t places no ¢
restriction on the trapsverse photons that may be present. o

The effect of the subsidiary condition (5.36) becomes apparent if we
calculate the expectation vatue of the energy of an attowed state |¥). Since
from Eq. (5.36) and its adjoint we have

(Plabkyask) — ab®aoR)I¥)> = (Flabk)[ask) — aok)]¥) =0,
it foltows from Eq. (5.32) that

2
CYIHY) = (Y Z Z howal(k)a, (k)| ¥, (537

ie._only the(_fransverse > photons contribute to the expectation value of the
energy as a consequence of the sibsidiary condition. The same is true for all
other observables.

Thus, as a result of the subsidiary condition, in free space observable
quantities will involve transverse photons only. This explains our earlier
assertion that longitudinal and scalar photons are not observed as free
particles. Only transverse photons are so ob"served corresponding to the two

non-covariant formatism of Chapter 1 where we worked in the Coulomb
gauge. In the covariant treatment, although they dom’t show up as free
particles, the presence of longitudinal and scalar photons is not ruled out
altogether. Of the resulting additional two degrees of freedom (for each k),
one is removed by the subsidiary condition (5.36). The other can be shown to
correspond to the arbitrariness in choice of Lorentz gauge. More specifically,
one can'show that altering the allowed admixtures of longitudinal and scatar
photons is equivalent to a gauge transformation between two potentials both
of which are in Lorentz gauges. (See Problems 5.2 and 5.3.)

For free fields (i.e. no charges present), it is then si rRlest towork in a gauge
such that the vacuum is represented by the state [0> in which no photons of
any kind are present [see _Eq. (5.29a)]. But the vacuum could also be )
described by any state containing no transverse and only allowed admixtures
of scalar and longitudinal photons. This description would merely corre- |
spond to a different’ choice of Lorentz gauge. The situation is entirely |

analogous for states containing transverse photons.
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For the electromagnetic field in the presence of charges, the situation is
more complicated. We can no longer ignore the longitudinal and scalar
photons. When discussing the photon propagator in the next section, we shall
see that longitudinal and scalar photons play an important role as virtual
particles in intermediate states and provide a covariant description of the
instantaneous Coulomb interaction of Chapter 1. However, in this case too,
one need consider only transverse photons in initial and final states of
scattering processes. This corresponds to a particular choice of gauge and the
fact that one can consider particles initially and finally, when they are far
apart, as free. In Section 6.2 we shall return to this idea of switching the
interaction between colliding particles on and off adiabatically as they
approach and as they move apart.

We have developed the Gupta—Bleuler formalism only to the limited extent
to which it is needed in applications. It is possible to develop a more complete
systematic formalism in which states with negative norm do not appear as a
blemish in Hilbert space but occur in a self-consistent manner in a function
space with an indefinite metric. For most purposes, this complete formalism
is not required.}

53 THE PHOTON PROPAGATOR

In Section 3.4 we interpreted the Klein-Gordon propagator (3.56) as the
exchange of a virtual meson in an intermediate state. We now expect a similar
interpretation for the photon propagator (5.26) but, corresponding to the
four-vector nature of the field A*(x) and the resulting four independent
polarlzatxon states, we expect the exchange of four kinds of photons, two
corresponding to transverse polarization and one each to longitudinal and
scalar polarization. This description differs markedly from that of Chapter 1
where only transverse radiation occurred but no longitudinal or scalar
radiation. Instead we had the instantaneous Coulomb interaction between
charges. We shall see that these two descriptions are indeed equivalent.

To establish this interpretation in terms of photon exchange we consider
the momentum space propagator D§’(k), related to the configuration space
propagator D¥'(x), Eq. (5.27), by

Di¥(x) = (271? J d*kDE (k) e ~ikx, (5.38)

* The interested reader is referred to S. N. Gupta, Quantum Electrodynamics, Gordon and
Breach, New York, 1977; G.'Killén, Quantum Electrodynamics, Springer, New York, 1972, and
Allen & Unwin, London, 1972; or J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons, 2nd edn, Springer, New York, 1976, Section 6.3.
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From Eqgs. (5.27) and (5.19) we obtain

DE'(k) = i+ e k2 Z Ceet(kyer (k). (5.39)
In order to interpret this expression, we use the special frame of reference in
which the polarization vectors g*(k) are given by Egs. (5.21) and (5.22). The

last equation then becomes:
] 2
D (k) = 5—— “k)er(k
F (k) k2 + i8 {rgl 8r( )8,.( )

[K* — (km)n*] [k” (kn)n”]
(kn)? —

—yn*n } (5.40)

This equation exhibits the gqptrlbutlons to the photon propagator from
transverse, longitudinal and scalar photons.
By analogy with the meson case, we interpret the first term in Eq. (5.40),
2

1
A = u v
D k) = e '; e“(k)el(k), (5.41a)

as the exchange of transverse photons. In the language of Chapter 1, it
corresponds to the interaction of charges via the transverse radiation field,

The interpretation of the remaining two terms in Eq. (5.40) follows not from
considering longitudinal and scalar photons separately, but from combining
them into a term proportional to n“n® plus the remainder. Eq. (5.40) then
becomes

DE'(k) = 1DE’(k) + cDF'(k) + vDE(K), (5.42)
where
nn’
=g =75 .
DE'(k) = ) = (5.41b)
1 kK — (kn)(k"n® + k°n*)
uv =
DE =27, [ (km)? — k2 ] (5.41c)

and it is these linear combinations, both of which involve longitudinal and
scalar photons, which allow a simple interpretation.

We first consider Eq. (5. 41b) in configuration space. From Egs. (5.38) and
(5.21a) we obtain

. guo v0 d3k exk X k00
CD‘lf' (X) = (27,[)4 J |k|2 dko € ‘

1
. #0 ,v0 0
g*°g o) i e §(x"). (5.43)
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This expression has the time dependence [(x”)] and the space dependence
[1/]x|] characteristic of an instantaneous Coulomb potential. Thus we see
that the exchange of longitudinal and scalar photons, represented by the term
(5.43), corresponds to the instantaneous Coulomb interaction between
charges. In Chapter 1, we quantized the transverse radlatlon field only and
treated the instantaneous Coulomb 1nteract10n as a classical potentlal
corresponding to the fact that the instantaneous Coulomb field does not
represent independent dynamical degrees of freedom but is fully determined
by the charges. In the present treatment, the longitudinal and scalar field
components are also quantized and the instantaneous Coulomb interaction
emerges as an exchange of longitudinal and scalar photons.

Finally, we must discuss the remainder term (5.41c). In Chapter 1 the
complete electromagnetic interaction between charges was represented in
terms of the interactions via the transverse radiation field and the instan-
taneous Coulomb fields. Both these have been accounted for in the present
treatment, and for the two treatments to be equivalent the contribution of the
remainder term (5.41c) to all observable quantities must vanish. This is
indeed the case, the basic reason being that the electromagnetic field only
interacts with the conserved charge—current density s*(x), Eqs. (5.2) and (5.4).
We shall illustrate this for a simple example.

We shall see in Section 7.1, Eq. (7.14), that the scattering of charges by each
other is, in lowest order of perturbation theory, given by the matrix element
of the operator

J d*x J d*yst()Dgulx — y)sa(y). (3.44)

Here s4(x) and s3(y) are the two interacting charge—current densities. It is
clear from Eq. (5.43) that the contribution of cDg,(x —y) to (5.44)
corresponds to the instantaneous Coulomb interaction between the charge
densities p;(x, x°) = s¥(x, x°)/c and pa(y, x°) = s}y, x®)/c. Similarly, the
transverse propagator tDg,.(x — y) accounts for the electromagnetic interac-
tion between the current densities j;(x) = s;(x) and j,(y) = s2(y).

The contribution to (5.44) of the remainder term gDg,.(x — y) is easily
shown to vanish, on account of current conservation. Transforming this
contribution to expression (5.44) into momentum space, one obtains

an® J d*ksi(— K)rDru(k)s3(K), (5.45)
where the momentum transforms s¥(k), r = 1, 2, are defined, analogously to
Eq. (5.38), by

sH(x) = Jd“ks“(k) e"ix  p=1,2. (5.46)

1
@n*



Problems 3

The current conservation equations, J,s*(x) = 0, translated into momen-
tum space, become

kst(k)=0, r=12. (5.47)

We see from the explicit form (5.4lc) that each term in gDg,(k) is
proportional to either k, or k, or both. Hence it follows from Eq. (5.47) that
the expression (5.45) vanishes.

This completes our discussion of the equivalence of the two formulations of
quantum electrodynamics. In doing this, we employed a special frame of
reference leading to a division of the fields into transverse, longitudinal and
scalar parts. In general, such a division is not required, and we shall work
with manifestly covariant expressions involving summations over all four
polarization states. In particular, the photon propagator, Egs. (5.38) and
(5.39), which will be very important in the development of quantum
electrodynamics, has this property.

PROBLEMS
5.1 Show that the Lagrangian density obtained from
& = —iFu(x)F"(x)
by adding the term —1(3,4%(x))(,4%(x)), i.e.
& = —iF(x)F"(x) — $8,4"(x))0,4%(x)),
is equivalent to the Lagrangian density, proposed by Fermi:
= —H8,A,(x)NG"A*(x)).
5.2 From the commutation relations (5.28) show that
[as(k) — ao(k), ab(k) — ab(k)] = 0

Show that the most general state representing the physical vacuum, i.e. the state
in which there are no transverse photons present but which contains the most
general allowed admixture of scalar and longitudinal photons, is given by

[WsL) = Zo Z - (g, ng, .. n (of)™10>
n1=0n2=0 i=1
where

of = al(k;) — ab(k,),

k; are the allowed wave vectors [see Eq. (1.13)], and |0) is the vacuum state in
which there are no photons of any kind present. Show that the norm of this state
is given by

» <\PSL|\PSL> = |C(0, 09 o ')lz'

What is the most general state in which there are a definite number of
transverse photons, with definite momenta and polarization vectors, present?
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5.3 |¥;) is a state which contains transverse photons only. Let

11> = {1 + clas(k) — ab(k)I}¥r),

where ¢ is a constant. Show that replacing |¥;)> by |¥W;)> corresponds
to a gauge transformation, i.e.

HrlA* )N = (FrlAt(x) + AX) YD,

2hc?\'/? s —ikx
A(x)=<765§> Re(ic e 7*¥).

54 By making the minimal substitution

where

awm»vmn=m+%&mwm

0.'() > [Dug(00]' = [0 — - A()]¢'(x)

in the Lagrangian density (3.23) of the complex Klein—-Gordon field ¢(x), derive
the Lagrangian density #((x) for the interaction of the charged bosons, described
by the field ¢(x), with the electromagnetic field A*(x).

Assuming that this interaction is invariant under the charge conjugation
transformation %, show that

FAYx)E ! = — A%(x).

[The transformation properties of ¢(x) and of s*(x), Eq. (3.33), under charge
conjugation were discussed in Problem 3.5.}

Hence show that a single-photon state |k,r) is an eigenstate of € with
eigenvalue —1.



CHAPTER 6

The S-matrix expansion

We shall now progress from the discussion of the free fields to the realistic and
much more interesting case of fields in interaction, in which particles can be
scattered, created and destroyed. In essence this requires solving the
coupled non-linear field equations for given conditions. In quantum
electrodynamics, for example, one must solve the inhomogeneous wave
equation (5.12) with the Dirac current density (4.28) as source term. This is an
extremely difficult problem which has only been solved in perturbation
theory, i.e. the Hamiltonian of the system is divided into that of the free fields
plus an interaction term. The latter is treated as a perturbation which is
justifiable if the interaction is sufficiently weak. For quantum electrody-
namics, where the coupling of photons and electrons is measured by the small
dimensionless fine structure constant a ~ 1/137, this approach is outstand-
ingly successful, not only in calculating processes in lowest order of
perturbation theory but also in calculating higher-order corrections.

In the Heisenberg picture, which we have so far been using, this programme
is still very complex, and it was decisive for the successful development of the
theory to work instead in the interaction picture. In Section 6.2 we shall study
the equations of motion of the interacting fields in the interaction picture and
we shall obtain a perturbation series solution suitable for collision processes.
This solution, known as the S-matrix expansion, is due to Dyson. The Dyson
expansion of the S-matrix 18 of great importance since it contains the
complete information about all collision processes in a form suitable for
extracting the transition amplitude for a specific process to any order of
perturbation theory. A systematic procedure for doing this will be developed
in Section 6.3.
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Before proceeding with these topics, we shall in Section 6.1 introduce
natural units which considerably simplify details of the following calculations.

6.1 NATURAL DIMENSIONS AND UNITS

We have so far used c.g.s. units in which the fundamental dimensions, in
terms of which quantities are expressed, are mass (M), length (L) and time
(7). In relativistic quantum field theory, expressions and calculations are
much simplified if one uses natural units (n.u.). In natural units one takes
mass, action (A4) and velocity (¥) as fundamental dimensions and chooses # as
unit of action and the velocity of light ¢ as unit of velocity. Hence # = ¢ = l in
natural units, and c.g.s. expressions are transformed into natural units by
putting # = ¢ = 1. In such n.u. expressions all quantities have the dimensions
of a power of M. Since
A

A

one has the general result that a quantity which has the c.g.s. dimensions
MPLATT = MP-aTrgatry—a=2r, 6.2)

has the n.u. dimensions M?~ 97", In natural units, many quantities have the
same dimension. For example, the momentum-—energy relation for a particle
of mass m becomes, in natural units,

E2=m?+p*=m® + k2, (6.3)

so that mass, momentum, energy and wave number all have the same natural
dimension M. The c.g.s. expression for the dimensionless fine structure
constant

e? 1
o = 47'[hc = W (CgS) (643)
becomes
e2
= = U 4b
"= 70g W (6.45)

so that in natural units electric charge is dimensionless (M°).

From the general relation (6.2) or by using particular equations one easily
derives the n.u. dimensions of all quantities, and some of the more important
ones are listed in Table 6.1.

Working in natural units it is very easy to obtain numerical results in any
system of units. A quantity in natural units will have a dimension M". To
convert this quantity to whatever c.g.s. units are convenient, one merely
multiplies it by such powers of # and c, expressed in the appropriate units, as to
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Table 6.1 The c.g.s. dimensions MPLYT" and the n.u. dimensions M" = MP? 47" of
some quantities.

c.gs. n.u.
Quantity p q r n
Action 1 2 -1 0
Velocity 0 1 -1 0
Mass 1 0 0 1
Length 0 1 0 -1
Time 0 0 1 -1
Lagrangian or Hamiltonian densities 1 -1 -2 4
Fine structure constant o 0 0 0 0
Electric charge 1 3 -1 0
Klein-Gordon field ¢(x) * 1 i -1 1
Electromagnetic field 4*(x) * i 5 =1 1
Dirac fields y(x) and J(x) * 0 -3 0 3

* The dimensions of the fields can, for example, be obtained from the Lagrangian densities,
Egs. (3.5), (5.10) and (4.20).

give it the correct c.g.s. dimensions. One frequently interprets M as an energy
and measures it in MeV. The conversion factors

h =658 x 1022 MeV -sec (6.52)
he = 1.973 x 10~ MeV-cm (6.5b)

then enable one easily to express quantities in terms of MeV, centimetres and
seconds. Two examples will illustrate this.
The Thomson cross-section (1.72) becomes, in natural units,

’

8n o?
0=——-
3 m?

(6.6)

With m = 0.511 MeV, we convert the right-hand side of this equation to cm?
by multiplying by (hc in MeV -cm)? which, from Eq. (6.5b), gives
87 , (1973 x 107! MeV-cm)?
0=—

= 6.65 x 10725 cm?.
37 (0511 MeV)? 65 x 107" cm

Secondly, we quote the n.u. expression for the lifetime 7 of the positronium
ground state 11S,.} It is given by

2
-5

(6.7)

|
T=——
m

K

#See J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, 2nd edn, Springer, New
York, 1976, p. 286, Eq. (12-108).



98 The S-matrix cxpansion  Chap. 6

where m is the mass of the electron. With m in MeV, we must multiply Eq.
(6.7) by (h in MeV -sec), Eq. (6.5a), to obtain
_ 2 (6.58 x 107%* MeVsec)

— -10
T= e (0,511 MeV) = 1.24 x 10 sec.

This conversion factor is of course the same for converting any lifetime t
from natural units to seconds, the essential points being that in natural units ¢
has the dimension M ~! and must be expressed in (MeV)™ .

These examples illustrate how very easy it is to obtain numerical results in
any c.g.s. units from equations expressed in natural units. No advantage is
gained by tediously retaining factors of # and ¢ throughout a calculation or
by converting a n.u. equation into c.g.s. form by inserting the appropriate
factors of # and c¢ prior to substituting numerical values.

Although rarely required, the c.g.s. form of an equation is easily obtained
from its n.u. form. In a sum of terms, one must multiply each term by
appropriate powers of # and ¢ to make all the terms have the same c.gs.
dimensions. [E.g. a factor (E + k), with E interpreted as an energy and k a
wave number, could be turned into (E + chk) or into (E/c + hk), etc.]
To obtain the correct c.g.s. dimensions for the whole expression, it must be
multiplied by a factor #°® with the exponents a and b determined from
dimensional arguments. Usually they are easily guessed.

From now on we shall in general work in natural units.

6.2 THE S-MATRIX EXPANSION

So far we have mainly considered the free, i.e. non-interacting, fields, using the
Heisenberg picture (H.P.) in which state vectors are constant in time and the
operators carry the full time dependence.

We now turn to the study of the interacting fields. For example in
quantum electrodynamics (QED), the interacting electron—positron and
electromagnetic fields are described by the Lagrangian density

b =%+ % (6.8)
with the free-field Lagrangian density
Lo = NLP(x)([iy*0u — mp(x) — 28,4, ()N 4*(x))] (6.9)
and the interaction Lagrangian density
&1 = N[ —s(x)A4,(x)] = N[ef(x)A(x)(x)] (6.10)

[see Eqs. (4.66)—(4.68) and (5.10)]. In Eqs. (6.9) and (6. 10) we have written the
free-field and the interaction Lagrangian densities as normal products. This
ensures, as for the free-field cases considered earlier, that the vacuum
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expectation values of all observables, e.g. energy or charge, vanish. Corre-
sponding to the division (6.8), the complete Hamiltonian H of the system is
split into the free-field Hamiltonian H, and the interaction Hamiltonian H,:

. H=H, + H,. 6.11)

As discussed at the beginning of this chapter, we shall employ the inter-
action picture (I.P.) which leads to two essential simplifications.}

Firstly, in the L.P. the operators satisfy the Heisenberg-like equations of
motion (1.87) but involving the free Hamiltonian H, only, not the complete
Hamiltonian H.

Secondly, if the interaction Lagrangian density .#; does not involve
derivatives (and we shall restrict ourselves to this case until Chapter 14), the
fields canonically conjugate to the interacting fields and to the free fields are
identical. (For example in QED 0.9/}, = 0.%,/0,, etc.) Since the L.P. and
the H.P. are related by a unitary transformation, it follows that in the I.P. the
interacting fields satisfy the same commutation relations as the free fields.

Thus in the LP. the interacting fields satisfy the same equations of motion
and the same commutation relations as the free-field operators. Con-
sequently, we can take over the many results derived for free fields (in
Chapters 3-5) as also true for the interacting fields in the I.P. In particular,
the complete sets of plane wave states which we obtained continue to be
solutions of the equations of motion, resulting in the same plane wave
expansions of the field operators as before, the same number representations
and the same explicit forms for the Feynman propagators.

In the I.P., the system is described by a time-dependent state vector |®(¢)).
According to Eqgs. (1.88) and (1.89), |®()) satisfies the equation of motion

d
i3 10> = H®I@), (6.12)

where
H(t) = eiflot~to H$ ¢~ 1Holt~t0) (6.13)

is the interaction Hamiltonian in the 1.P., with H{ and H, = H$ being the
interaction and free-field Hamiltonians in the Schrodinger picture (S.P.).
Hy(¢) is obtained by replacing, in H$, the S.P. field operators by the time-
dependent free-field operators. In Eqgs. (6.12) and (6.13) we have omitted the
labels I, used in Eqs. (1.88) and (1.89) to distinguish the 1.P., as we shall be
working exclusively in the I.P. in what follows. '

Eq. (6.12) is a Schrodinger-like equation with the time-dependent Hamil-
tonian Hy(t). With the interaction ‘switched off’ (i.e. we put H, = 0), the state

! The interaction picture, and its relation to the Heisenberg and Schrodinger pictures, is
discussed in the appendix to Chapter 1 (Section 1.5). The reader who is not intimately familiar
with this material is advised to study this appendix in depth at this stage.
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vector is constant in time. The interaction leads to the state |®(f)> changing
with time. Given that the system is in a state [i{)> at an initial time t = t;, i.e.

|®(2)> = i, (6.14)

the solution of Eq. (6.12) with this initial condition gives the state {d(¢)) of the
system at any other time t. It follows from the Hermiticity of the operator
Hi(t) that the time development of the state |d(¢))> according to Eq. (6.12) is a
unitary transformation. Accordingly it preserves the normalization of states,

{D(t)|d(t)) = const., (6.15)

and, more generally, the scalar product.

Clearly the formalism which we are here developing is not appropriate for
the description of bound states but it is particularly suitable for scattering
processes. In a collision process the state vector |i> will define an initial state,
long before the scattering occurs (t; = — o), by specifying a definite number
of particles, with definite properties and far apart from each other so that they
do not interact. (For example in QED |i) would specify a definite number of
electrons, positrons and photons with given momenta, spins and polariza-
tions.) In the scattering process, the particles will come close together,
collide (i.e. interact) and fly apart again. Eq. (6.12) determines the state
|{d(c0)) into which the initial state

|O(—0)) = i), (6.14a)

evolves at t = oo, long after the scattering is over and all particles are far
apart again. The S-matrix relates |®(c0)) to |®(— o0)> and is defined by

|®(0)) = S|®(—0)) = Sli>. (6.16)

A collision can lead to many different final states |f), and all these
possibilities are contained within |[®(o0)>. (For example, an electron—
positron collision may result in elastic scattering, Bremsstrahlung (i.e.
emission of photons), pair annihilation, etc.) Each of these final states | f ) is
specified in a way analogous to [i).

The transition probability that after the collision (i.e. at ¢ = c0) the system
is in the state |f) is given by

< f1D(o0) > (6.17)
(Id(o0))> and |i) are assumed normed to unity.) The corresponding proba-
bility amplitude is
(Sf1®(a0)> = {fISli) = Spu. (6.18)
With the state [®d(c0))> expanded in terms of a complete orthonormal set of
states,

[d(0)) = ; L/ >{Sf1®(0)) = Zf‘, \f>Ssss (6.19)
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the unitarity of the S-matrix can be written
Y ISp? = 1. (6.20)
S

Eq. (6.20) expresses the conservation of probability. It is more general than
the corresponding conservation of particles in non-relativistic quantum
mechanics, since now particles can be created or destroyed.

In order to calculate the S-matrix we must solve Eq. (6.12) for the initial
condition (6.14a). These equations can be combined into the integral
equation

D)) =1i)> + (—i)J_ dt Hy(t1)|®(1)) . (6.21)

This equation can only be solved iteratively. The resulting perturbation
solution, as a series in powers of H,, will only be useful if the interaction
energy H;is small. This is the case for QED where the dimensionless coupling
constant characterizing the photon—electron interaction is the fine structure
constant « ~ {/137.

Solving Eq. (6.21) by iteration

(1)) = li> + (—1) J_ de Hy1)li>

+ (=) J dr, J deaHy(t)Hi(E)D(22))

and so on, we obtain, in the limit t — oo, the S-matrix

—® —®

S = 20 (~i)"r dtlfl dt2...J"‘ldt,,Hl(tl)Hl(tz)...Hl(t,,) (6.222)

-3 (_n:)_ dt, J dty ... J A6 T{H(t)H(E) ... Hit)}. (6.22b)
Here the time-ordered product T{...} of n factors is the natural generalization
of the definitions (3.53) and (4.59) for two factors, i.e. the factors are ordered
so that later times stand to the left of earlier times, and all boson (fermion)
fields are treated as though their commutators (anticommutators) vanish.
The equivalence of the two forms (6.22a) and (6.22b) only holds if H, contains
an even number of fermion factors (as in QED) so that the reordering process
introduces no extra factors (—1). The equivalence of the two forms holds
separately for each term of the series. Its verification is left as an exercise for
the reader.” Finally we rewrite Eq. (6.22b) in terms of the interaction
Hamiltonian density 4#,(x) to obtain the explicitly covariant result

YY) n!

S

J. .. Jd“x, d*x; ... d%x, T{LH () H(X2) ... Hi(xa)),  (6.23)
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the integrations being over all space-time. This cquation is thc Dyson
expansion of the S-matrix. It forms the starting point for the approach to
perturbation theory used in this book.

We have seen that the amplitude for a particular transition |i) — |f is
given by {f|S}i>. To pick out from the expansion (6.23) the parts which
contribute to this matrix element is a complex problem to which we shall
return in the next section, but we must first discuss the specification of the
initial and final states |i) and |f ).

In the above perturbation formalism the states |i) and |f) are, as usual,
eigenstates of the unperturbed free-field Hamiltonian H,, i.e. with the
interaction switched off (H, = 0). This description appears wrong since the
particles we are dealing with are real physical particles even when far apart.
An electron, even when far away from other electrons, is surrounded by its
photon cloud; it is a real electron, not a bare electron without its own
electromagnetic field. Hence, the use of bare particle states |i> and |f)
requires justification. One possible procedure is to appeal to the adiabatic
hypothesis in which the interaction Hy(t) is replaced by H(t)f(t). The
function f(t) is chosen so that f(t) =1 for a sufficiently long interval
—T<t<T and f(t) - 0 monotonically as t » +oo. [In QED, for
example, we could replace the elementary charge e by the time-dependent
coupling constant ef (¢).] In this way the initial and final states are described
by bare particles. During the interval — oo < ¢t € — T the equation of motion
(6.12), with Hy(t) replaced by Hi()f (t), generates the real physical particles
from the bare particles, and during the interval |t| < T we are dealing with the
physical particles and the full interaction Hy(t). In particular, the full
interaction is effective during the interval —7 < ¢ < 7 while the particles are
sufficiently close together to interact (i.e. we must choose 7" > t). The essence
of the adiabatic hypothesis is that the scattering, which occurs during the
interval |t| < 7, cannot depend on our description of the system a long time
before the scattering (t « — ) or a long time after the scattering (¢ > 7). Only
at the end of a calculation do we take the limit 7 — oo. Of course, if we
calculate a process in lowest order perturbation theory [i.e. we use only the
term of lowest order » in Eq. (6.23) which gives a non-vanishing result] then
the interaction is exclusively used to cause the transition and not also to
convert bare into real particles. We may then take the limit T — oo from the
start of the calculation and work with the full interaction Hy(?).

>&6.3 WICK’S THEOREM

We must now see how to obtain from the S-matrix expansion (6.23) the
transition amplitude { f|S|i> for a particular transition |i> — |f) in a given
order of perturbation theory. The Hamiltonian density #(x) in Eq. (6.23)
involves the interacting fields, each linear in creation and absorption
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operators. Hence the expansion (6.23) will describe a large number of
different processes. However, only certain terms of the S-matrix will
contribute to a given transition |i> — |f ). For these terms must contain just
the right absorption operators to destroy the particles present in |i ), and they
must contain the right creation operators to emit the particles present in | f .
They may also contain additional creation and absorption operators which
create particles which are subsequently reabsorbed. These particles are only
present in intermediate states and are called virtual particles.

Calculations can be greatly simplified by avoiding the explicit introduction
of virtual intermediate particles. This can be achieved by writing the S-matrix
expansion as a sum of normal products, since in a normal product all
absorption operators stand to the right of all creation operators. Such an
operator first absorbs a certain number of particles and then emits some
particles. It does not cause emission and reabsorption of intermediate
particles. Each of these normal products will effect a particular transition
li> = |f> which can be represented by a Feynman graph, similar to those
introduced in Chapters 3 and 4.

Consider, for example, Compton scattering (¢~ + 7 — e~ + y). The QED
interaction Hamiltonian density is, from Eq. (6.10),

H(x) = —Li(x) = — eN[P()AXW(x)]. (6.24)

Since the negative (positive) frequency parts A=, § ~, ¢~ (A%, ¢ *, §*) are
linear in creation (absorption) operators for photons, electrons and posi-
trons respectively, the only normal product which contributes to Compton
scattering is

P A YAt
The method for expanding the S-matrix as a sum of normal products
which we shall now describe is due to Dyson and Wick.
We first of all summarize the general definition of a normal product. Let Q,

R, ..., W be operators of the type ¥*, A%, etc,, i.e. each is linear in either
creation or absorption operators, then

N(QR... W)= (= 1)(Q'R'... W"). (6.25a)

Here Q',R,..., W are the operators Q,R,..., W reordered so that all
absorption operators (i.e. positive frequency parts) stand to the right of all
creation operators (i.e. negative frequency parts). The exponent P is the
number of interchanges of neighbouring fermion operators required to
change the order (QR... W) into (Q'R’... W'). We generalize the definition
(6.25a) by requiring the normal product to obey the distributive law

N(RS...+ VW. . )=N(RS..)+ NVW..). (6.25b)
The QED interaction (6.24) is a normal product of field operators. We shall
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find that in other cases too the interaction Hamiltonian density can be written
as a normal product, i.e.

H(x) = N{A(X)B(x)...}, (6.26)

where each of the fields A(x), B(x), ..., is linear in creation and absorption
operators. Hence we must consider the expansion into a sum of normal
products of a ‘mixed’ T-product (i.e. a T-product whose factors are normal
products), such as occurs in the S-matrix expansion (6.23).

From the definition of the normal product we have for two field operators
A = A(x,) and B = B(x,) that

[A*,B™ ], for two fermion fields
. 6.2
[A*,B~], otherwise (6.27)

For- two fermion fields the anticommutators, and in all other cases the
commutators, are c-numbers, i.e. they do not involve creation or annihilation
operators. [We had examples in Egs. (3.41) and (4.53a).] Hence, the right-
hand side of Eq. (6.27) is always a c-number. It is given by (0]ABl0), as
follows by taking the vacuum expectation value of Eq. (6.27). Hence Eq.
(6.27) becomes:

AB — N(AB) = {

AB = N(AB) + <0|ABJ|0>. (6.28)
Since
N(AB) = +N(BA), (6.29)

the minus sign applying in the case of two fermion fields, the plus sign in
all other cases, it follows from Eq. (6.28) that for x? # x3

T{A(x1)B(x2)} = N{A(x1)B(x2)} + OIT{A(x1)B(x2)}I0>.  (6.30)

The case of equal times, x? = x3, will be considered below.
The special notation

A(x1)B(x2) = COIT{A(x1)B(x2)}l0) (6.31)

will be convenient for this vacuum expectation value which will be called the
contraction of A(x;) and B(x,). Being a vacuum expectation value, it
will vanish unless one of the field operators 4 and B creates particles which
the other absorbs. The non-vanishing contractions are of course just the
Feynman propagators, e.g. Egs. (3.56), (3.60), (4.61) and (5.26):

d(x1)P(x2) = 1Ap(x1 — X3) (6.32a)
P(x1)P'(x2) = ¢T(x2)p(x1) = iAp(x1 — X2) (6.32b)
Y x W p(x2) = —Wa(x2)Walx1) = iSpap(X1 — X2) T (6.320)

A“(xl)A"(xz) = iD‘lf-v(Xl - Xz). (6.32d)
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To generalize Eq. (6.30) to several operators A = A(x,),....
M = M(x,,), ..., the generalized normal product is defined by

N(ABCDEF ...JKLM ...)
(= et
—{_ P
= (~1)PAKBCEL ...N(DF ...UM ..)  (6.33)

where P is the number of interchanges of neighbouring fermion operators
required to change the order (ABC ...) to (AKB...); for example

N@alxi W p(x2) 4" (X3 Wo(x )P o(x5))

=(— 1)wg(xz)%(xs)N(wa(xl)A“(x3)le(x4)). (6.34)

For the case of unequal times (i.e. x{ # xJ, for i # j), Wick has proved
the following generalization of Eq. (6.30): '

T(ABCD ... WXYZ) = N(ABCD ... WX YZ)
+N(ABC ... YZ) + N(4BC ... YZ) + -+ + N(ABC ... YZ)

+N(ABCD... YZ)+ - + N(AB ... WX YZ)
[ Iy A Ry |

+ o (6.35)

On the right-hand side of this equation appears the sum of all possible
generalized normal products that can be formed from (4BCD ... WX YZ),
the first, second and third lines representing all terms with no, one and two
contractions, and so on. Each term on the right-hand side of this equation
contains all the factors in the same order in which they occur in the T-product
on the left-hand side.

Eq. (6.35) states Wick’s theorem. We shall not reproduce its proof which is
by induction, and so not very illuminating}

With the interaction (6.26), the S-matrix expansion (6.23) contains the
mixed T-products

T{H#\(x1)... #1(xn)} = T{N(AB...)x,...N(4B...),,}.  (6.36)

Wick extended the theorem (6.35) to include such mixed T-products. In each
factor N(4B..)), we replace x, = (x{,X,) by & =(x{ +¢,x,), (¢>0),
depending on whether the substitution is made in the creation or absorption
part of the field. Hence

T{N(AB...),,...N(AB...),} = im T{(AB...);,...(AB..))s}, (6.37)
. &= 0 3

*G. C. Wick, Phys. Rev. 80 (1950) 268.
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the normal and chronological orderings within each group (AB...); being
the same on account of the + ¢ in &°. On expanding the right-hand side of Eq.
(6.37) by Wick’s theorem before going to the limit ¢ — 0, contractions within
one group (AB...);, (i.e. over equal-times operators when ¢ — 0) vanish as
the group is already in normal order. We thus have the desired result: the
mixed T-product (6.36) can be expanded according to Eq. (6.35), provided
contractions over equal times are omitted:

T{N(AB...);,...N(AB..), } = T{(AB...)s,... (AB ...}z }nocrs. (6.38)

where ‘no e.t.c.’ stands for ‘no equal-times contractions’.

Eqs. (6.35) and (6.38) represent the desired result, enabling us to
expand each term in the S-matrix expansion (6.23) into a sum of generalized
normal products. Each of these normal products corresponds to a definite
process, characterized by the operators not contracted which absorb and
create the particles present in the initial and final states respectively. The
non-vanishing contractions which occur in these generalized normal pro-
ducts are the Feynman propagators (6.32) corresponding to virtual particles
being emitted and reabsorbed in intermediate states. In the next chapter we
shall see how to evaluate these individual contributions to {f|S|i> which
result from the application of Wick’s theorem.



CHAPTER 7

Feynman diagrams and rules in QED

In the last chapter we obtained the S-matrix expansion (6.23) and Wick’s
theorem for writing the terms in this expansion as a sum of normal
products. In this chapter we shall show how to calculate the matrix element
{f18]i> for a transition from an initial state |i) to a final state | ) in a given
order of perturbation theory. For definiteness we shall give this development
for the important case of QED. Once this case is understood, the correspond-
ing formalism for others is easily derived.

In Section 7.1 we shall show how to pick out from the S-matrix expansion
the terms which contribute to { f|S}i> in a given order of perturbation theory.
These terms are easily identified. They are those normal products which
contain the appropriate destruction and creation operators to destroy the
particles present in the initial state |i> and create those present in the final
state | f.

In Section 7.2 we shall evaluate the transition amplitude { f|S|i) in momen-
tum space. This leads to Feynman diagrams as a way of interpreting the terms
in the Wick expansion. There exists a one-to-one correspondence between the
diagrams and the terms which can be summarized in simple rules. These
enable one to write down transition amplitudes directly from the Feynman
graphs, rather than proceed ab initio from Wick’s theorem. In Section 7.3 we
shall state these rules, known as Feynman rules, for QED. We shall have
obtained these rules from the Dyson—-Wick formalism, but historically they
were first derived by Feynman using a strongly intuitive approach.

In the first three sections of this chapter we shall consider QED as the
interaction of the electron positron field with the electromagnetic field. In the
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last section (Section 7.4) we shall extend QED to include, in addition to the
electron—positron field, other leptons, such as the muon and tauon.

7.1 FEYNMAN DIAGRAMS IN CONFIGURATION SPACE

The processes to which the individual terms in the S-matrix expansion (6.23),
ie. in

S=Y sm=Yy
n=0 n=0

contribute are of course determined by the nature of the interaction #(x).
For QED this is given by Eq. (6.24):

Hi(9) = —eN{F AW ()} a2

= —eN{@™ ¢ ‘/7—),(4” 4 A"z(tﬁ‘“ Zw')}x. ’
With ¢* (™), y*(y ) and A*(A7) being linear in absorption (creation)
operators of electrons, positrons and photons, respectively, the interaction
(7.2) gives rise to eight basic processes, e.g. the term —eN@W/* A~y *), cor-
responds to the annihilation of an electron—positron pair with the creation of
a photon.

Using the conventions for Feynman diagrams explained at the end of
Section 4.4, we can represent these eight processes by the Feynman graphs of
Fig. 7.1, which have been grouped into pairs. The graphs in each pair
correspond to absorption or emission of a photon, together with: (a) the
scattering of an electron, (b) the scattering of a positron, (c) pair annihilation,
or (d) pair creation. These diagrams illustrate the basic processes to which the
QED interaction gives rise and will be referred to as the basic vertex part. All
other QED Feynman diagrams are built up by combining such basic vertex
parts.

e e~
e e” 1 et et
Photon Y Y
absorption
Y Y
et et
e” e” et et e” e’
Phaton
emission Y Y Y Y
+ +
(b) ¢ (c) (d) ¢

(a)
Fig. 7.1. The Feynman diagrams of the eight basic processes of the QED interaction
H(x) = —eN@W A),. () e~ scattering; (b) e’ scattering; (c) e*e” annihilation;
(d) e*e™ creation.

(="

n!

f fd“x, A, T{HXy) . H(x)), (1D)
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The diagrams of Fig. 7.1 also represent the processes arising from the first-
order term SV in Eq. (7.1). However these are not real physical processes, i.e.
for none of them can energy and momentum be conserved for real physical
particles for which we must have k2 =0 for photons, and p* = m? for
fermions. Consequently

fIsMi =0 (7.32)

for these transitions, as will be shown explicitly in the next section. More
generally

SfI8™)i> =0 (7.3b)

for any unphysical process, ie. for a transition between real physical states
which violates a conservation law of the theory. This follows since S generates
a solution of the equations of motion, so that

ISty =0 (73¢)

for an unphysical process, and since Eq. (7.1) is a power series in the coupling
constant e.

To obtain real processes, we must go at least to the second-order term S
in Eq. (7.1). This term contains two factors #). Its expansion by Wick’s
theorem into a sum of normal products corresponds to all meaningful ways
of joining two basic vertex parts into a Feynman diagram, as we shall now see.

Application of Wick’s theorem, Eqgs. (6.35) and (6.38), to §‘® leads to

§2 i S - (4
where o
2
SP = =5 | 41 dxNIGAY) T AD).,] (7.52)

2
S§ = -5 f d*x; dxs (NI AY)s (T AV,
!  ES—

+ NLWAY), (P AY),, 1} (7.5b)
2
s@ =% f a1 A NI A ) PP A, ] (7.50)

2
S@) = _‘_;.! f d*x; d*x2{NLOFY* A, (7P Agh)s, ]

+ NIy A)s, (0P 4py)s, 1} (71.5d)
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2
s = -2 f dx1 A, NI AD) (P AV, ] (7.50)
! | I |
e? .
S = - | d*x d“xz(t‘ﬁv Aatﬁ)x,(lﬁv"Aatlﬁ)xz- (7.5)

The first of these terms, S, Eq. (7.5a), is not very interesting, It
corresponds to two processes of the kind illustrated in Fig. 7.1 going on
independently of each other. Like S, this term does not lead to any real
transitions.

- The two terms in §§, Eq. (7.5b), are identically equal to each other as is
seen by permuting the operators. This requires care since the fermion fields
are anticommuting operators and four-component spinors. Permuting the
two groups (YAy) involves an even permutation of fermion operators and
the spinor indices of each group are self-contained.* Hence

NI AY):, FAY).,] = NIGADFAD)s,]. (1.6)

Using this result and interchanging the integration variables x, < x, in the
second term of Eq. (7.5b), one obtains

SP = —e? J d%xy d*x, NI(PAY)s, (P AY)s,]. (1.7

This expression contains one fermion contraction. This is given by the
fermion propagator (6.32c) which is a c-number and corresponds to a virtual
intermediate fermion. For t, < t,, we can think of it as a virtual electron
propagating from x, to x,, for t; < t, as a virtual positron propagating from
X1 to x,. As explained in Section 4.4, no time-ordering is implied in the
present formalism—indeed, all space-time points x; and x, are summed
over—and these two cases are combined and jointly referred to as a virtual
fermion propagating from x, (associated with ) to x,; (associated with ). In
addition to this propagator, expression (7.7) contains two uncontracted
fermion and two uncontracted photon operators. These absorb or create
particles present initially or finally, so-called external particles. The operator
S$ contributes to many real processes. (To conserve energy and momentum,
the initial and final states must each contain two particles.) Since the
operators in S{ are in normal order, it is easy to pick out the terms which
contribute to a given process.

One of these processes is Compton scattering

y+e —y+e, (7.8)

* The reader can always resolve any cases of doubt by writing out explicitly the spinor indices.
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already mentioned in Section 4.4. This process corresponds to sclecting the
positive frequency part ¥ *(x,) of ¥(x,) to absorb the initial electron, and the
negative frequency part § ~(x,) of {(x;) to create the final electron. But either
A*(xy) or A*(x,) can absorb the initial photon and correspondingly
A~ (x3) or A7(x;) must emit the final photon. Thus the part of Eq. (7.7)
which causes Compton scattering is

SP(ye” > ye7) =S, + 8 (1.9)

where

S.= —e? Jd4x1 d* X2 " (x1)y%iSe(x, — Xz)?ﬂA;(xl)A;(x2)¢+(x2)
(7.10a)

Sp = —¢? Jd“xl d*xf (x1)7"iSp(x; — x2)YP Ag (X AT (x)Y T (x2).
(7.10b)

In Egs. (7.10), the operators have been put in a normal order and we have
substituted Eq. (6.32c) for the fermion contraction.

The contributions S, and S, to Compton scattering are represented by the
Feynman graphs in Figs. 7.2(a) and (b). The latter is the same as Fig. 4.3.
(Remember that, except for the conventions about initial and final lines, there
is no time ordering in Feynman graphs, so that the same graph can be drawn
in many different ways.) In Fig. 7.2 we have attached the appropriate Lorentz
indices (o, ) to vertices, and particle labels (y, e7) to external lines. We shall
often omit these as redundant.

The other real processes described by Eq. (7.7) are Compton scattering by
positrons, and the two-photon pair annihilation and creation processes, i.e.

@D y+e" >y+ef, (ii) et +e” 2y +7y, (i) y+y—oet +e .
(7.11)

(a) (b)
Fig. 7.2. The contributions §,, S, Egs. (7.10), to Compton scattering.
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The corresponding Feynman diagrams are shown in Figs. 7.3 7.5. We lcave it
to the reader to write down the operators for the first two of these processes.
For the pair creation process one obtains

§SPQ2y —»e*e)

= —e? J‘d4xl d“lefl_'(xl)y“isp(xl - xz)yﬂtﬁ_(xz)A;(x,)A;(xz). (7.12)
Although we have only shown one diagram in Fig. 7.5, Eq. (7.12) actually
gives two contributions since the operator A; (x;) can absorb either of the

initially present photons, with A} (x;) absorbing the other. A similar
situation exists for the pair annihilation process.

(a)

et
X X1

4
(a) (b)

Fig. 7.3. The Feynman diagrams for Compton scattering by positrons.

e
Y

Fig. 74. The Feynman diagram for
et +e oy +7y.
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X

(a)

(B)

-~

Fig. 7.5. The Feynman diagram for
y+7y-et +e, Eq (7.12).

We next consider Eq. (7.5¢). This term contains four uncontracted fermion
operators. Accordingly, the real processes to which this term gives rise are
fermion—fermion scattering.e” —e”,e* — e ore” — e* scattering, accord-
ing to which positive and negative frequency parts are selected from the
external fermion fields. The photon-photon contraction in Eq. (7.5¢)
describes the interaction between the charges as the exchange of transverse,
longitudinal and scalar photons. This photon propagator occurs associated
with two conserved current operators s*(x) = (Jy*{).. As discussed in
Section 5.3 [particularly the discussion of Eq. (5.44)], this covariant
formulation is equivalent to the usual description of the interaction in terms
of the instantaneous Coulomb interaction together with the exchange of
transverse photons.

We next consider electron—electron scattering,

e +e —oe +e7, (7.13)
known as Mgller scattering, in more detail. The part of the operator (7.5¢)
describing this process is
SP(2e > 2e)

2
- f d*x, dxa NI ™9 e, (79 )5, TiDesg(xs = x2), (1.14)

where we substituted Eq. (6.32d) for the photon contraction.
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Let us label the initial and final electron states 1, 2 and |, 2’ respectively,
i.e. with an obvious notation we are considering the transition

li> = c'@)c"DI0) - |f> = '(2)e'(1)]0). (7.15)

Eq. (7.14) gives four contributions to the transition (7.15), since either
initial electron can be absorbed by either ¢ * operator, and either final
electron can be emitted by either  ~ operator. These four terms comprise two
pairs which differ only by the interchange of the integration variables
X1 <> X, in Eq. (7.14). We need consider only one of these pairs and multiply
the result by a factor 2. The remaining two terms are represented by the
Feynman graphs in Fig. 7.6. '

We had another case of two identical contributions to a process, related to
the interchange x; < x;, in connection with Eq. (7.5b). This represents a
general result. The nth order term S® in the S-matrix expansion (7.1)
contains a factor 1/n! and n integration variables x,, x,, ..., x,. These are only
summation variables and can be attached to the n vertices of a given
Feynman graph in n! ways. We can omit the factor 1/n! if we consider only
topologically different Feynman diagrams, i.e. diagrams which differ only in
the labelling of vertices are considered the same. Some care is required in
interpreting this statement. For example, the two diagrams of Fig. 7.6 are
topologically different from each other because the two final electrons have
different properties. (These were labelled 1’ and 2'. In practice they are the
momenta and spins.) Permuting x; and x, does not interchange the two
graphs of Fig. 7.6. As we shall see, their contributions occur with a relative
minus sign and correspond to the ‘direct minus exchange scattering’ which
the reader should recognize, from non-relativistic quantum mechanics, as
characteristic of two identical fermions.

In order to obtain explicit expressions for these two contributions, let

Yix) =ci)fix), ¥ x) =c'(jgix) (7.16)
1I
1 ! 1 A
o
P
2 2
X2 XZ
o

Fig. 7.6. The two diagrams for electron—electron scattering (Moller
scattering).
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be the parts of the operators ¥ *(x) and { ~(x) proportional to ¢(j) and c'(j)
respectively. j = 1,2, 1, 2’ labels the electron states involved in the process.
The part of the S-matrix operator (7.14) which effects the transition
[i> = |f>, Eq. (7.15), is then given by

SPe () +e R »e (1N+e (2)=8,+ S (7.17a)
where S, and S, correspond to Figs. 7.6(a) and (b), and are given by

Sa= —¢é* jd4x1 d4X2N[('Z/_1~'?a¢1+)xl('p2_'?ﬂ¢;)xz]iDFaﬂ(Xl — X3)
(7.17b)

Sy = —¢é? fd4x1 d4x2N[(‘p2-'?a¢r)x,('pl—'?ﬂ‘p;)xz]iDFap(xl — X2).
(7.17¢)

The relative minus sign of the two contributions is implied by the normal
products in these equations. To arrange the creation and annihilation
operators in both cases in the same order, e.g. as c(1')c'(2))c(1)c(2), requires
the normal products in Egs. (7.17b) and (7.17¢c) to be reordered equal to

*lﬁ;(xl)lﬁz"'(xz)tﬂ(xl)tﬁi‘(h) and +‘pl_’(XZ)'pz_'(xl)wr(xl)lp;(XZ)

respectively. Using Egs. (7.16), we obtain from Egs. (7.17) the transition
amplitude

f18P(2e™ - 2e7)iy

= {—32 J‘d4x1 d4x2gl’(xl)y%(xl)gZ’(x2)yﬂfZ(XZ)iDFaﬂ(Xl - xz)}

— o2}, (1.18)

where the term {1’ <> 2'} is just the first expression in braces with the labels 1’
and 2’ of the two final electron states interchanged. Our final result (7.18) has
the desired form of a ‘direct’ amplitude minus an ‘exchange’ amplitude, the
two amplitudes being transformed into each other by exchanging the single-
particle states of the two electrons in the final state. In non-relativistic
quantum mechanics this result follows through the use of antisymmetric
wavefunctions according to Pauli’s principle. In the above field-theoretic
derivation the anticommutativity of the fermion field operators is the crucial
element.

These arguments generalize. Whenever the initial or final state contains
several identical fermions, one obtains a completely antisymmetric transition
amplitude < f|S|i>. For example, if the initial state |i)> contains s positrons in
states 1, 2...., s, the corresponding S-matrix operator will contain s uncon-
tracted operators N(W(x )W(x;)... fi(x,)). Any one of these operators
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Y(xy), ..., Y(xs) can absorb the positron in state 1, and so on, giving s! terms
whose sum is completely antisymmetric in the labels 1,2,...,s, since the
operators Y(x,), ..., Y(x;) anticommute. An analogous argument holds for
several identical final state fermions.

More curiously, the fact that the operator (x) can absorb an electron or
create a positron implies that transition amplitudes are antisymmetric with
respect to initial electron and final positron states. (A similar argument
applies of course to Y(x) and initial positrons and final electrons.) We have an
example of this in electron—positron scattering,

et +e —oet +e,

known as Bhabha scattering. The part of the operator (7.5¢) describing
this process must contain the uncontracted operators ¢ *, ¢ ¥,y ~ and J ™ to
absorb and create the particles present initially and finally. As in the case of
Magller scattering, four terms contribute which again reduce to two by the
general argument given above. It is left as an exercise to the reader to derive
from Eq. (7.5¢) the following expression for the S-matrix operator for Bhabha
scattering;

SPete” o ete)=8,+ S (7.192)

where

Sa = —é? J‘d4x1 d4x2N[(‘Z/_—?a¢+)x,(‘7/_+?ﬂ¢_)x2]iDFaﬂ(X1 — Xa2),
(7.19b)

Sp= —é? J‘d4x1 d4x2N[(‘p_'ya¢_)xl('p+yﬂ¢+)x2]iDFaﬂ(xl — X2).
(7.19c¢)

The Feynman graph for S, is shown in Fig. 7.7(a). It represents the scattering
by photon exchange, as occurred for electron—electron scattering (Fig. 7.6).
However, in the term S, both initial particles are annihilated at x, and the
final electron—positron pair is created at x,. It corresponds to the annihilation
diagram of Fig. 7.7(b). As in electron—electron scattering, there is a relative
sign factor (—1) between the two contributions implicit in the normal
products which becomes explicit if the creation and annihilation operators
are brought into the same normal order in both cases. That the diagrams of
Figs. 7.7(a) and (b) are related by the interchange of an initial electron state
and a final positron state is brought out by ‘deforming’ diagram 7.7(b) into
diagram 7.7(c). Comparing diagrams 7.7(a) and (c) one sees that the latter is
obtained from the former by interchanging the initial electron line at x;, and
the final positron line at x,.
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X1

X2

X2

(a) (b) (c)

Fig. 7.7. The contributions S, and S, to electron—positron scattering (Bhabha
scattering): (a) represents photon exchange; (b) and (c) are equivalent ways of
representing the pair annihilation process.

We shall now discuss briefly the remaining second-order terms S§’ to S,
Eqs. (7.5d)—(7.5f).

Eq. (7.5d) contains two uncontracted fermion fields and gives rise to two
processes according to whether the fermion present initially and finally is an
electron or a positron. The two terms in Eq. (7.5d) are again equal to each
other. For the electron case this equation reduces to

§SP(e™ - e)
= —e? J‘d4xl d4x21]1__(x1)y“iSF(x1 - x2)yﬂ¢+(x2)iDFaﬂ(x1 —Xx2) (7.20)

which corresponds to the diagram of Fig. 7.8. It represents a modification of
the properties of a bare electron due to its interaction with the radiation field.
It is one of the processes—in fact the simplest—which converts a bare
electron into a physical electron, i.e. one surrounded by its photon cloud. This
interaction changes the energy of the system, that is, the mass of the physical
electron as compared with that of the bare electron. This is known as the self-
energy of the electron, and Fig. 7.8 is called a self-energy diagram. Its
evaluation leads to a divergent integral. These divergent self-energy effects
can be eliminated by incorporating them in the properties of the physical
electron. This is the process of renormalization which will be studied in
Chapter 9.

—p- > >~
X2 x4

Fig. 7.8. The electron self-energy S®(e” — e7), Eq. (7.20).
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Fig. 7.9. The photon self-energy (vacuum polarization)
SP(y —» ), Eq. (7.21).

Fig. 7.9 similarly describes a photon self-energy arising from the term S{2),
Eq. (7.5e). The interaction between the electromagnetic and the electron—
positron fields enables the photon to create a virtual electron—positron pair
which subsequently annihilates again. An external electromagnetic field (for
example the field of a heavy nucleus) will modify the distribution of these
virtual electron—positron pairs, i.e. it will ‘polarize the vacuum’ in much the
same way in which it would polarize a dielectric. For this reason such photon
self-energy graphs are called vacuum polarization diagrams. Like the electron
self-energy, they lead to infinities which are again eliminated by renormaliza-
tion (see Chapter 9).

Eq. (7.5¢) for the photon self-energy can be written

§P@p - y)= —e? fd4x1 d*x; N[ A ™), (T AT Y)s,]). (7.21)
L= |

Writing the spinor indices out explicitly, we can re-express the normal
product in Eq. (7.21) as

N[('Fzﬁfu!ﬁu)xl(lpaﬁﬁllﬁz)xz]
= (— DY x2 W 2 ) A (X DY u(X )P o(X2) A (X2)

= (= DTrfiSe(x2 — x1)A4 7 (x))iSe(xy — x2)47(x2)].  (7.22)

(Here 4,,(x) = 73,4, (x), etc.)

The minus sign in the last equation is characteristic of closed fermion loops
(i.e. closed loops consisting of fermion lines only) which always involve the
transposition of a single fermion operator from one end of a product of such
(7.22) is equally charactenstlc It corresponds to summlng over ver all msaf)m states
of the v1rtual elcctron—nosmon pair. (The connection between spin sums ‘and’
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Fig. 7.10. The simplest vacuum diagram,
Eq. (7.5f).

Finally, Fig. 7.10 shows the graph representing Eq. (7.5f). This diagram
has no external lines and consequently does not cause any transitions. One
can show that such vacuum diagrams (i.e. diagrams without external lines)
may be omitted altogether, at any rate in elementary applications.

This completes our initial analysis of the various terms which occur on
decomposing S‘® into normal products. We have seen that the terms
obtained correspond to specific processes and how Feynman diagrams
greatly aid their interpretation. No new features occur for the higher-order
terms S, .... The methods developed are sufficient to deal with such higher-
order processes although the complexity of the mathematics increases
rapidly with order.

7.2 FEYNMAN DIAGRAMS IN MOMENTUM SPACE

In the last section we developed a technique for deriving the S-matrix
operator which generates a particular transition |i> — |f ) in a given order. In
practice one is usually interested in the corresponding matrix element
{f18™]i>. The states |i> and |f) are usually specified by the particles of
known momenta and spin and polarization properties present initially and
finally. Explicit calculations of the matrix elements lead to a reinterpretation
of the Feynman graphs as diagrams in momentum space. By studying some
specific cases we shall see that these diagrams are closely related to the
mathematical expressions they represent. It is possible to formulate a set of
rules which enable one to write down the matrix elements directly from the
Feynman diagrams without detailed calculations. These Feynman rules,
which will be given in the next section, are the linchpin of practical
calculations in perturbation theory.

Calculation of the matrix elements, with |i> and [f) specified as
momentum eigenstates of the particles present, essentially corresponds to
Fourier transforming the fields into momentum space in order to pick out the
appropriate absorption and creation operators. For the propagators, these
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Fourier transforms are given, from Egs. (6.32¢), (6.32d), (4.63) and (5.27), by

1
¢(x1)'7/_(x2) = iSp(x1 — x3) = Qn )4 J‘d piSp(p) e~ P17 ¥) (7.23a)

M 1 - X1 =X
A%(x1)AP(x,) = iD¥(x; — x5) = anF f d*kiD# (k) e "1 —*2  (7.23b)
where
p+m 1
Se(P) pP—mi+ie p-—m+ic (7.242)
by = 9. 7.24
D¥( = k* + ie (7.245)

The Fourier expansions of the uncontracted fields ,  and A4, are given by
Eqgs. (4.38) and (5.16). The effect of the uncontracted operators y*, ¥y * and
A}, which occur in a term of the S-matrix expansion, acting on |i), is to give
the vacuum state |0). For example, it follows from Eqgs. (4.38) and (5.16) that

m \/? .
Yyrx)le py = 10) (VE ) u(p) e 7% (7.252)

+ + =10 m 2 =i —ipx 25b
grx)letp) =| ><VEI,> o(p) e (7.25b)

1\ .
ALKy = 10> (50— elk) e (7.25¢)
2V,
Here we have suppressed the spin and polarization labels. For example, e "p)
and |yk) stand for the one-electron and one-photon states
le™p> =le"pr) =IOy, hk) =hkrd =alk)l0), r=12,

and u(p) and g, (k) are short for u,(p) and e,(k). In the following we shall
frequently simplify the notation in this way, writing c(p) for c.(p), etc.

The effect of the uncontracted operators { ~,  ~ and A4, , which occur in a
term of the S-matrix expansion, acting on |0), is to produce the final state | f).
In particular, we find from Egs. (4.38) and (5.16) that

1/2
Y0y =Y leTp) (%) u(p) e?* (7.26a)
m \'/? i
Yo (xI0) =3 le*p> <ﬁ> v(p) e'P* (7.26b)

1 1/2
A (x)I0> =3 yk> <m> e.(k) e~ (7.26¢)
k
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where the summations are over spin and polarization states, as well as
momenta. It is straightforward to generalize the results (7.25) and (7.26) to
states involving several particles.

Using Eqgs. (7.23)-(7.26) it is easy to calculate S-matrix elements, as the
following examples will show.

7.2.1 The first-order terms S

The Feynman graphs resulting from the first-order term

SW = je f d*xNWAY)x (7.27)

are just the basic vertex diagrams of Fig. 7.1. Let us calculate the matrix
element ( f1S™)i) for one of these processes, namely for electron scattering
with emission of a photon, illustrated in Fig, 7.11. In this figure we state the
energy—momentum four-vectors of the particles involved but their spin and
polarization labels have been suppressed, as discussed above. Fig. 7.11
represents the transition

> =le"p> = c'@I0> = If> = le”p; vk = '(p)a'(K)I0), (7.28)

ie. |i> consists of an electron of momentum p (and spin state s = 1, 2), and
|f> of an electron of momentum p’ (and spin state s’ = 1, 2) plus a photon of
momentum k' (and polarization state r' = 1, 2). From Egs. (7.25)—(7.28) we
obtain

CANIVERCE F37 $i fd4xl/7"(X)v“A{(X)¢+(X)|e’p>

. . m 1/2 B - 1 172 "
e o (7)o | () oo
m 2 —ipx
X l:( VE,) u(p)e™ ] (7.29)

P P

kl

Fig. 7.11. The process e — ¢~ + 7. The four-momenta

of the particles are shown. The spin and polarization

labels (s, s' and r) have been suppressed, as explained in
the text.
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The x-dependent terms in this expression give

fd‘x exp [ix(p' + k' — p)] = @rn)*8“Y(p’ + k' — p), (7.30)
where we have anticipated going to the limits of an infinite volume, V' — oo,

and an infinite time interval during which the transition may occur. From
Eqgs. (7.29) and (7.30) we obtain

m 1/2 m 1/2 1 1/2
<f|S“’|i>=[<2ﬂ)‘5“’<P'+""”)<VE) (VE) (m) ]ﬂ
P 4 v

(1.31)

where

M = iea(p)f(k = p — pu(p). (7.32)

Egs. (7.31) and (7.32) are our final result. # is called the Feynman
amplitude for the process represented by the Feynman graph in Fig. 7.11.
Since this diagram is labelled by the momenta (and the implied spin and
polarization labels) of the particles involved, it is called a Feynman diagram
in momentum space, in contrast to the configuration space diagrams of the
last section, e.g. Fig. 7.1(a).

The §-function in Eq. (7.31) arose from the x-integration in Eq. (7.29) over
the three exponential functions associated with the two fermion lines and the
photon line which meet at the vertex x. This é-function ensures conservation
of energy and momentum for this process: p = p’ + k'. [Correspondingly,
the argument of the polarization vector g,(k’) in Eq. (7.32) was written
k' = p — p’.] We shall see that for more complicated Feynman diagrams
such a d-function is obtained in this way for each vertex, ensuring energy—
momentum conservation at each vertex and consequently for the process as
a whole.

For the process e~ — ¢~ + y and the other first-order processes energy—
momentum conservation is incompatible with the conditions for real
particles (p2 = p'2 = m?%, k' = 0, in our case), so these are not real processes,
as stated earlier. :

7.2.2 Compton scattering

As second example, we calculate the matrix element for Compton scat-
tering, for which the S-matrix operator and Feynman graphs were given
in Egs. (7.9) and (7.10) and Fig. 7.2. Their counterparts in momentum space
are shown in Fig. 7.12, corresponding to the transition

li> = c'(P)a'®)0> — [/ = c'(@)a'(K)I0). (7.33)
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g=p+k g=p—#'

k '
(a) (b}
Fig. 7.12. Compton scattering by electrons.

The S-matrix element for this transition is derived from Egs. (7.9) and
(7.10). Using Egs. (7.23a), (7.25) and (7.26), one obtains

m \112 . 1 1/2 N
<./.[Sa|i> = —e2 fd4xl d4x2 l:( VE ) ﬁ(p/) elP xi"i(m> #(k') enk x1:|
» 'y

1
@my*

1 2 —ikxy m \'/? —ipx2
() o] ) e

Note that u and #@ are four-component spinors and that Sg and the factors ¢
are 4 x 4 matrices. The spinor indices are suppressed, but these quantities
must always be written in the correct order of matrix algebra.

The x, and x, integrations in Eq. (7.34) give

X

fdﬂtqiSF(q) e ~iatx1 —x2)

fd‘-’c. exp [ix,(p" + k' — g)] fd4x2 exp [ix2(q — p — k)]

= 2m)*o*(p' + k' — g)(2m)*6“Nq — p — k)
= Qn)*6"(p' + k' — p — bH)2n)*6“(q — p — k). (7.35)

Hence energy and momentum are conserved at each vertex and overall for
the process. In particular, the energy momentum g of the virtual inter-
mediate clectron is fixed:

qup+hkwp +k'. (7.36)



124 Feynman diagrams and rules in QED  Chap. 7

Substituting Eq. (7.35) in (7.34) and carrying out the ¢ integration, one
obtains

18] = |:(27r)45‘4’(P’ +kK—p—k

m \V2 m \1/2 1 1/2 1 1/2
- My .
* <VE|:> (VEp'> <2 Va)k) <2 Vwk') :| (737

where .#,, the Feynman amplitude associated with Fig. 7.12(a), is given by
M= —e*u(p)K)iSe(q = p + k)AK)u(p). (7.38a)

It is left as an exercise for the reader to show that the second contribution
to Compton scattering, < f|Sy|i), is given by the same equation (7.37) with .#,
replaced by the Feynman amplitude for Fig. 7.12(b):

My = —u(p)EKk)iSe(q = p — K)AK Ju(p). (7.38b)

Our result, Eqs. (7.37) and (7.38), displays some general features which
always occur in calculating S-matrix elements by these methods.

Firstly, the factors in Eqs. (7.38a) and (7.38b) are in the correct spinor order.
Comparing these expressions with the Feynman graphs, Figs. 7.12(a) and
(b), we can describe this order as: Following a fermion line in the sense of its
arrows, corresponds to writing the spinor factors from right to left.

Secondly, comparing these results with Eqgs. (7.31) and (7.32), we note many
common features. The square brackets in Eqs. (7.31) and (7.37) each contain a
é-function for overall energy-momentum conservation (multiplied by (27)*),
and factors (1/2Vw,)'/* and (m/VE,)'/* for each external photon and fermion
line respectively. The Feynman amplitudes (7.32) and (7.38) contain a factor
(ie), associated with each vertex in the related Feynman graphs, and factors 4,
u and §, associated in an obvious manner with external electron and photon
lines. The one additional feature in Eqs. (7.38) is the presence of the factors
iSg(q) which correspond to the intermediate fermion lines in diagrams 7.12(a)
and (b). These common features are examples of Feynman rules which will be
fully discussed in the next section.

Finally, we see that, for both Figs. 7.12(a) and (b), the intermediate particle
cannot be a real particle: g> % m?, since we cannot have energy-momentum
conservation for three real particles at a vertex. This is in contrast to the non-
covariant perturbation theory of non-relativistic quantum mechanics, where
time and space coordinates (and consequently energy and three-momentum)
are treated on different footings: particles in intermediate states satisfy the
energy-momentum conditions of real particles (ie. p2 = m?, k* =0) but
energy is not conserved in intermediate states although three-momentum is.

We briefly consider Compton scattering by positrons in order to establish
some differences of detail which occur for positrons. The Feynman graphs in
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k
A
p +— —- + o p — Q'
g=-p-k
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(a) (b)

Fig. 7.13. Compton scattering by positrons.

momentum space for this process are shown in Fig. 7.13. We leave it as
cxercises for the reader to show from first principles that the Feynman
diagram 7.13(a) again leads to Eq. (7.37), with .#, replaced by

M, = E(p)k)iSe(q = —p — k)HK W(P) (7.39)

and to obtain the corresponding result for diagram 7.13(b).

In Eq. (7.39), the spinor v(p’) relates to the final-state positron, and the
spinor (p) to the initial-state positron. The order of the spinor factors in this
cquation corresponds to writing these factors from right to left as one follows
the fermion line in the sense of its arrows. This is the same prescription as for
clectrons. Care is also needed in interpreting the momentum labels on
Feynman diagrams. For external lines the momenta shown are the actual
four-momenta of the particles present initially and finally. This applies to
clectrons, positrons and photons. This means that on external electron lines,
the flow of four-momentum is in the same sense as that of the arrows on the
lines; on external positron lines it is in the sense opposite to that of the arrows.
On internal fermion lines, on the other hand, the four-momentum labels on
Feynman graphs always represent energy-momentum flow in the same
direction as the arrows.

This ¢ompletes our detailed analysis of Compton scattering. In the
following cxamples, the detailed derivations will be left as exercises for the
reader, and we shall concentrate on the remaining features of Feynman graphs
not yet encountered.

7.2.3 Klectron electron scattering

The Feynman diagrams in configuration space for Meller scattering were
shown in Fig. 7.6, The corresponding momentum space graphs are shown in
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P1

]
(a) (b)

7.14. Electron—electron scattering (Mgller scattering).

Fig. 7.14. The S-matrix element for the transition

li> = c'@2)c'®1)I0) — |/ = '(@,)c(@1)I0> (1.40)
is obtained from Eqs. (7.17). One finds
{Sf18®Q2e™ - 2e7)iD

m
VE,

1/2
= [(27!)“5“’(1)’1 + Py~ py —p)lI ( ) }(/t, +.M,) (141a)

where the meaning of II(m/VE,)"/? should be clear to the reader,’ and where
the Feynman amplitudes corresponding to Figs. 7.14(a) and (b) are given by

My = — 7))y u(Py)iDrog(k = p2 — pL)a(py)yPu(p2)  (7.41b)
My = +20(p,)y " u(Py)iDpag(k = p2 — p')i(p) you(p2). (741c)

The last two equations exhibit explicitly the relative minus sign of the
direct and exchange amplitudes, which reflects the exclusion principle, as
discussed in the last section. The new feature in these equations is the
appearance of the factors iDg,g(k), corresponding to the internal photon lines
in the Feynman graphs 7.14. Since from Eq. (7.24b) Dg,4(k) = Dr.g(—k), the
sense of k along an internal photon line is arbitrary. However, a definite
direction must be chosen for k in order to assign consistent signs to k in the J-
functions associated with the vertices at the two ends of an internal photon
line. For example, with the choice for k in Fig. 7.14(a), i.e. from the bottom to
the top vertex, p, =p, + k and p, + k = p}, giving the correct overall
energy—momentum conservation for the process.

tie. even without detailed derivation, but Eqs. (7.41) should of course be derived by the
reader.
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7.24 Closed loops

A new feature occurs for Feynman diagrams containing closed loops of
internal lines, such as the electron and photon self-energy diagrams, Figs. 7.8
and 7.9. For diagrams without loops, such as we have been considering in this
section so far, energy-momentum conservation at the vertices determines the
four-momenta of all internal lines completely. For loop diagrams this is not
the case. Consider, as a typical example, the electron self-energy. Its Feynman
graph in momentum space is shown in Fig. 7.15. Conservation of energy and
momentum at the two vertices gives

p=q+k=p (7.42)

but this does not determine the internal momenta k and q separately. The
intuitive response to this is that one must sum over all allowed values of k and
¢ to find the total amplitude.

To see that this conjecture is correct, we require the matrix element of the
electron self-energy operator S e™ — e7), Eq. (7.20), for the transition

i) = c'@)I0> — | f> = c'()I0). (7.43)
We leave it to the reader to obtain the result

S18P(e” —> e )li>

2 (N (N [ qog a4k @y — k — g0k +
“\VE, VE, q p q q-p)

x iDrap(k)a® )r*iSe(q)y"u()

45(4) 172 m 1/2
= (
_[(27:) oM(p' — p)<VE> (VE,) }fl (7.44a)
where
2
M = 2n )4 Jd kiDgag(KYa(p)y"iSe(p — k)y*u(p)- (7.44b)
k
» 7 Pk i p

Fig. 7.15. The clectron self-energy.
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As expected, this Feynman amplitude contains an integration over all
internal photon momenta k, while for each value of k the internal fermion
momentum has the value g =p — k which corresponds to energy-
momentum conservation at the vertices. This integration over an internal
momentum is typical of a closed loop. (For another example, see Problem 7.2
on the photon self-energy.)

Eqgs. (7.44) display the same structure which occurred in all our other
examples. The origins of the individual factors in Eq. (7.44a) should be clear
to the reader. The Feynman amplitude .# contains factors iS¢ and iDg for
fermion and photon propagators, spinors u and @ for the initial and final
external electron lines, and a y-factor for each vertex. The spinor quantities
are in the expected order as one follows the fermion line in the direction of its
arrows. The remaining factor (—e?) = (ie)? has its origin in the form of $?
for QED, Egs. (7.1) and (7.2).

7.3 FEYNMAN RULES FOR QED

The S-matrix elements {f|S}i> which we have calculated for various
processes exhibit a definite structure, which allows one to identify individual
factors and features with different aspects of the corresponding Feynman
graphs. The same identification between the mathematical expressions and
Feynman graphs is possible for all processes. Furthermore no new features
occur for other processes. This enables one to construct a set of rules for
writing ( f|S|i> down directly from the Feynman graphs.

In this section we shall state these rules for QED. They represent a general-
ization and a tidying-up of earlier results. Their origins should be clear to the
reader. Where appropriate, we shall give explanations and cross-references,
but we do not repeat everything from scratch; for example, we are assuming
the conventions about arrows and momentum labels for Feynman graphs.

The expression for the S-matrix element for a transition can at once be
written down by generalizing our earlier results. For the transition |i> — | f,
where the initial and final states are specified by the momenta (and spin and
polarization variables) of the particles present, the S-matrix element is given
by

“J VIR YN ]

1 172 1 \172
(FISIiy = 870+ [(2@45(4)(13 — Py (—V'"E> 1 (%) :ljl (1.45)

ext. ext.

Here P; and P, are the total four-momenta in the initial and final states, and
the products extend over all external fermions (e~ and ¢*) and photons, E
and w being the energies of the individual external fermions and photons
respectively.
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The Feynman amplitude . # is given by
=Y am (7.46)
n=1

where the contribution .# ™ comes from the nth order perturbation term S®.
The Feynman amplitude .#™ is obtained by drawing all topologlcally
different, connected Feynman graphs in momentum space which contain n
vertices and the correct external lines. The contribution to .#® from each
graph is obtained from the following Feynman rules.

1. For each vertex, write a factor iey* [see Egs. (7.1) and (7.2)].

2. For each internal photon line, labelled by the momentum k, write a
factor [see Eq. (7.24b)]

. . —Yap ) (a) Kk (B)
1Dgap(k) =1 K2+ ie NN e

3. For each internal fermion line, labelled by the momentum p, write a
factor [see Eq. (7.24a)]

(1.47)

4. For each external line, write one of the following factors [see Egs.
(7.25) and (7.26)]:

(a) for each initial electron: u,(p) p —_— (7.492)
(b) for each final electron: ii(p) - > D (7.49b)
(c) for each initial positron: o,(p) p < —e (7.49¢)
(d) for each final positron: v.(p) .- < Y (7.494d)
(e) for each initial photon: ¢,,(k) ,\M/(.‘.’.) (7.49¢)
K
: (a)
(f) for each final photon*: ¢,.(k) (7.49f)

L e Wran e 1

In Eqgs. (7.49) p and k denote the three-momenta of the external particles, and
r(=1, 2) labels their spin and polarization states.

5. The spinor factors (y-matrices, Sg-functions, four-spinors) for each
fermion line are ordered so that, reading from right to left, they occur in the
same sequence as following the fermion line in the direction of its arrows.

6. For each closed fermion loop, take the trace and multiply by a factor
(—1.

! For linear polarization states, which we are using, ,,(k) is real. In general it is complex (e.g.
for circular polarization), and we must then replace (k) by e%(k) for a final-state photon.
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This rule follows directly from the corresponding result in configuration
space, derived in Section 7.1 [see Eq. (7.22)].

7. Thefour-momenta associated with the three lines meeting at each vertex
satisfy energy-momentum conservation. For each four-momentum g which is
not fixed by energy-momentum conservation carry out the integration
(2m)~* [ d*q. One such integration with respect to an internal momentum
variable g occurs for each closed loop.

We had an example of this rule in Eq. (7.44b) for the electron self-energy.
Inclusion of the factors (2z) "4 in this rule is convenient, since all numerical
factors (except for the phase factor of rule 8) are accounted for in this way, as
will be shown below.

8. Multiply the expression by a phase factor dp which is equal to +1 (—1)
if an even (0dd) number of interchanges of neighbouring fermion operators is
required to write the fermion operators in the correct normal order.

In general this phase factor is only of significance when the contributions of
several Feynman graphs are added, and only the relative signs matter. The
situation most frequently met is the one we discussed for (¢ "e™)-and (e e *)-
scattering, involving contributions from diagrams which differ only by the
interchange of external fermion lines associated with identical fermion
operators, This corresponds to the interchange of either (i) two initial e (e™)
lines, or (ii) two final e (e™) lines, or (iii) an initial e (e*) line with a final
e*(e7) line.

It remains to justify our assertion, made when discussing rule 7, that the
above rules allow for all numerical factors. The only factors not taken into
account so far are factors (2z)* which occur together with §-functions or
result from propagators. The x-integration at each vertex gives a factor (2m)*
[see Eq. (7.30)], and the Fourier transform of each propagator gives a factor
(2n)~* [see Egs. (7.23)]. For a Feynman diagram containing n vertices and
Jfi(by) internal fermion (photon) lines, the Feynman amplitude contains a

factor
[@r)*Yr~Si—bt (7.50)

where the exponent — 1 allows for the factor (2r)* which was separated out in
Eq. (7.45). 1t is left as a problem for the reader to show that for a Feynman
diagram containing ! closed loops

n—fi—bi—1=—1I. (1.51)

Since one momentum integral { d*q occurs for each loop, wé may omit the
factor (7.50) from the Feynman amplitude expression provided we replace
each loop integral [ d*q by (2m)~* [ d*q.

This completes our discussion of Feynman rules for QED. The reader is
recommended to use Feynman rules to re-derive the matrix elements { f|Si)
which we obtained from first principles earlier in this chapter. After a little
practice, Feynman rules provide an extraordinarily simple method for
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obtaining even very complicated matrix elements, and for this reason they
form the basis of most practical calculations. Similar diagrammatic tech-
niques are also of great importance in many other fields, e.g. weak interactions
(to be studied later in this book) and condensed matter physics, where
analogous rules can be developed. In Appendix B, at the end of this book, we
give a summary of these rules for QED, as well as those for the standard
clectro-weak theory which will be derived later.

7.4 LEPTONS

So far we have treated QED as the interaction of electrons and positrons with
the electromagnetic field. But there are many electrically charged particles in
nature. These can be divided into two categories: hadrons which also interact
via strong forces (often called nuclear forces), and leptons which do not. Both
types interact via weak as well as electromagnetic interactions.

Electrons and positrons are leptons, as are muons (u*) and tauons (t%),
the latter discovered in 1975 only.} Both muons and tauons have spin
and charge + e. Furthermore, within experimental accuracy (which is high in
the case of muon experiments), they exhibit all the properties of particles
whose interactions are identical with those of electrons, except for their
different masses: m, = 206.8 m, = 105.7 MeV, m, = (1784 + 3) MeV. This is
referred to as e — u — t universality. Whether other particles exist in this
series of so-called sequential leptons is an open question. Present experiments
indicate only that none exist with a mass of less than about 15 GeV.

QED is usually understood to include the interaction of all kinds of leptons
(¢, i, 7,...) with the electromagnetic field. The reason why hadrons are
¢xcluded will become clear shortly. This extended QED which we shall now
study displays a new richness: processes involving more than one kind of
lepton.

Assuming universality, the extension of the theory is almost trivial. Like
the electron, we describe each kind of lepton by a Dirac spinor field: (x),
where [ labels the kind of lepton: | = e, y, 1, .... The generalization of the free-
ficld Lagrangian density for electrons, Eq. (4.67), is

Lo = El:lﬁz(X)(i?“aa — m(x), (7.52a)
and making the minimal substitution (4.64b) (wtih g = —e) leads to the
interaction Hamiltonian density

Hi(x) = —~ L(x) = —e; NG (x) AW (x)]. (7.52b)

! Just us the names muon and tauon refer to both positively and negatively charged particles,
a0 it is convenient to have a single word for electron and positron. It Is usual to use electron for
this purpose ux well aw for the negutively charged member of this pair. We shall follow this
practice, adding the approprlate quallfication when It s required to avoid ambiguity.
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This equation describes a local interaction since all field operators are
evaluated at a single space-time point. This is appropriate for the interaction
of the electromagnetic field with a point particle. While, within the limits of
current experiment, leptons are point-like, hadrons have finite size. For
example, the experimental value of the proton radius is of the order
0.8 x 1073 m.* For this reason the electromagnetic interactions of charged
hadrons cannot be described by expressions like (7.52b).

The second point to note about the interaction (7.52b) is that it consists of a
sum of terms each of which involves one kind of lepton only. Hence, the
interaction is described by basic vertex parts like those of Fig. 7.1, with both
fermion lines at a vertex referring to the same kind of lepton. Instead of two
electrons, as in Fig. 7.1, they could both be muons or both tauons. But we
could not, for example, have one electron and one muon. The vertex part in
Fig. 7.16 conserves charge but it does not occur with the interaction (7.52b)
since it would require an interaction term of the form —ey,Ay,. Conse-
quently, for any non-vanishing matrix element {j|5#i> the electron number
N(e), defined by

N(e) = N(e™) — N(eh) (7.53a)
in an obvious notation, is conserved, as are the muon and tauon numbers®
N(u) = N(u™) — N(u™*) (7.53b)
N(r) = N(z7) — N@z*). (7.53¢)
& B
Y

Fig. 7.16. A basic vertex part that does NOT

occur with the interaction (7.52b) which con-

serves electron and muon numbers at each
vertex.

* The point-like nature of leptons has been tested to much shorter distances. (See Sections 8.4
and 8.5.)
¥ These definitions will be modified when we consider weak interactions.
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Consequently processcs like
e +put—-et +u, (7.54)

although they conserve charge, are forbidden and indeed are not observed.

The extension of the S-matrix formalism and of the Feynman rules to the
QED interaction (7.52b) is now straightforward. Each term (Y Ay) in our
original interaction (7.2), which allowed for electrons only, is replaced by a
sum > ; (Y, 4¢)), and the S-matrix expansion (7.1) leads to

x T{N@W, AY1)x, - N A1), }- (7.55)

This expansion first of all contains terms involving one kind of lepton only.
These are the terms we considered in the last two sections, but we could now
be considering muons or tauons instead of electrons. S is of this type
and so are the terms in S'® with [, =1, (=e, &, ...). The more interesting
terms, for which new processes occur, are those involving more than one
kind of lepton.

Consider, for example, the [; = p, [, = e term in @, given by

S}tze) = _eZ J‘d‘txl d4x2T{N(‘puAwu)x,N(‘pe’mpe)xz}- (756)

Using Wick’s theorem [Egs. (6.35) aﬁd (6.38)] to expand the T-product in
terms of normal products, we obtain

Sie=—¢’ fd“xl AU NI ), (FedVre)s, ]

—e? J‘d4x1 d4x2N[('puAlpu)xl(‘pe’mpe)xz]- (757)

All other 'unequal-time contractions vanish as follows from the definition
(6.31) of a contraction as a vacuum expectation value.}

The first term in Eq. (7.57), like the term $'2, Eq. (7.5a), corresponds to two
independent unphysical processes of the kind shown in Fig. 7.1, except that
now one refers to a muon instead of an electron.

The second term in Eq. (7.57) gives rise to processes which involve two
external muons and two external electrons, and which must conserve charge,
electron number and muon number. These include electron—muon scattering

! When dealing with several fermion fields, we must assume that the field operators for
different fermion fields anticommute. We continue to assume that fermion and boson field
operators always commute with each other. (See J. D. Bjorken and S. D. Drelf, Relativistic
Quantum Fields, McGraw-Hill, New York, 1965, p. 98.)
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and, more interestingly, the process
et +e " sput +u, (7.58)

i.e. the annihilation of an (e*e™) pair leading to the creation of a (u*u™)
pair. The term in S2 responsible for this process is

SO(ete™ - ptuT)
= e f d*xy AN, YY), 2 Y0 E)s, iDras(x1 — X2),  (7.59)

and from this operator one can calculate the transition matrix elements. For
the transition shown in the Feynman graph in Fig. 7.17, i.e.

i) = lepzs e P> = cl(p2)dl(p1)I0)
=1 =17y 1P = cl(@)dlpDI0>,  (7.60)
one would in this way obtain the Feynman amplitude

MPete” > ptpT) = —ie2d,(p5)7 0 (P1)Drap( P1 + D2)0e(P1)YPuc(ps).
(7.61)

Here the labels e and p, attached to the fermion lines in Fig. 7.17, to creation
and absorption operators in Eq. (7.60), and to spinors in Eq. (7.61), dis-
tinguish electrons and muons.

We do not advocate deriving the Feynman amplitude (7.61) from
first principles (other than as an exercise), since it is trivial to extend the
rules for calculating amplitudes, which were given in the last section, to
QED involving several leptons. The S-matrix operator (7.59) differs from the
operator Sy, Eq. (7.19¢), for the annihilation diagram, Fig. 7.7(b), for (e*e™)
scattering in that in the final state the electrons are replaced by muons.
Hence the amplitude (7.61) can be derived in two steps.

Firstly, obtain the Feynman amplitude .#, corresponding to the operator
S,, Eq. (7.19¢), for the transition analogous to (7.60) but with all particles
electrons. .#, can be written down directly, using the Feynman rules of
Section 7.3.

€ pe K P2

prt+p2

€ py r*p

Fig. 7.17. The process et + e~ - ut + ™.
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Sccondly, in the expression [or . #,, replace all quantities referring to the
final state electrons by the corresponding quantitics for muons.

1t is left as an exercise for the reader to verify that this procedure leads to
Eq. (7.61).

There is one important difference between the e*e™ — u*u~ process and
(e*e”) scattering. For the latter, a second contribution stems from §,, Eq.
(7.19b), corresponding to Fig. 7.7(a). For the former, as we have seen, Eq.
(7.57) gives no such contribution. It would correspond to replacing the final
electron lines in Fig. 7.7(2) by muon lines, so that each vertex would involve
one electron line and one muon line (e.g. the vertex at the top would look like
Fig. 7.16), violating the conservation of both electron number N(e) and of
muon number N(u) at each vertex.

From this example, it is easy to see how to extend the rules of Section 7.3.
For any process, one must draw all relevant Feynman diagrams which
conserve N(e), N(u), ... at each vertex, i.e. the two lepton lines entering and
leaving a vertex must be of the same kind (both e or both p, etc.). The
Feynman amplitude corresponding to each of these diagrams is then written
down directly using the Feynman rules of the last section.

PROBLEMS

7.1 Derive the lowest-order non-vanishing S-matrix element (7.19) and hence the
corresponding Feynman amplitude for Bhabha scattering, i.e. the process

e*(p1,r1) + e (P2, 72) = e¥(pY, 51) + e (P2, 52)-
7.2 Show that the Feynman amplitude for the photon self-energy diagram in Fig. 7.9
is given by

—e?

T ent
where k and ¢.(k) are the momentum and polarization vectors of the photon.

7.3 A real scalar field ¢(x), associated with a spin-zero boson B, is described by the
Lagrangian density

J d*p Tr [£(K)Se(p + K)#(K)Se(p)]

Z(x) = Lo(x) + H(x)
where %, is the free-field density (3.5), and
H(x) = glo(x)]*/4!

describes an interaction of the field with itself, with g a real coupling constant.
(Normal ordering of operators is assumed throughout.)

Write down the S-matrix expansion, and pick out the normal ordered term that
gives rise to the BB scattering process

B(k,) + B(kz) - B(ks) + B(ks)

in first-order perturbation theory. Draw the Feynman diagram representing this
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term, and show that the corresponding S-matrix element is given by
1 1/2
Chs, kalSDlKy, k> = 2m)*69(ks + ke — ky — ko) ] (m) A

with the Feynman amplitude .# = ig. [Note that .# is independent of the boson
four-momenta kf = (w;, k;).]
Pseudo-scalar meson theory is defined by the Lagrangian density

L(x) = Lo(x) + L(x)
where

Lo(x) = HAp(x)*P(x) — p$*(x)] + POx)(iy*d, — myp(x)

represents a free real spin 0 field ¢(x) and a free fermion field y(x), and

Z\(x) = —igd(x)ysi (x)(x)
describes their interaction.

The interaction Lagrangian density #(x) is similar to that of QED, except that
ey* is replaced by (—igys), and the photon field 4,(x) is replaced by the meson
field ¢(x). Exploit this similarity to write down the Feynman rules for pseudo-
scalar meson theory.

A real scalar field ¢(x) is described by the Lagrangian density

Z(x) = Lo(x) + pU(X)$*(x),

where %, is the free-field Lagrangian density (3.5), and U(x) is a static external
potential.
Derive the equation of motion

(O + #)é(x) = 2uU(x)$(x).

Show that, in lowest order, the S-matrix element for an incoming boson, with
momentum k; = (w;, k;), to be scattered to a state with momentum k, = (wy, ky),
is given by

i2n é(w; — ;)

CkylSVk;) =
! V) 22Ve,)'?

200k, — k)

where
U@ = Jd"xU(x) eTiox,

This type of problem, with a static external potential, will be considered further
in Chapter 8.



CHAPTER 8

QED Processes in lowest
order

In the last chapter we established the Feynman rules for obtaining the matrix
element Sy, for any collision process in QED. In this chapter we shall start
by deriving from S; the experimentally observable quantities, i.e. the cross-
sections. This is a straightforward generalization of the corresponding
kinematical and phase—space arguments of non-relativistic collision theory.

The cross-sections obtained in this way are fully polarized, i.e. the photons
and leptons present initially and finally are in definite polarization states. (As
is customary, we use the term ‘polarization state’ for both photons and
fermions, meaning a spin state in the latter case.) In most practical situations,
the beams of colliding particles are unpolarized, and the polarizations of the
particles produced in the collision are not observed. It then becomes
necessary to average and sum over polarization states of initial and final
particles respectively. The very powerful and elegant techniques for perform-
ing these spin and polarization sums are developed in Sections 8.2 and 8.3.
The corresponding formalism for analysing polarization properties is more
complex, and we shall consider a simple example only.

In Sections 8.4-8.6, we shall illustrate our results by deriving the cross-
sections, in lowest non-vanishing order of perturbation theory, for some of the
processes considered in the previous chapter. By the end of this chapter, the
rcader should be able to deal in a similar way with any collision problem in
QED. (A reader who tires of these applications should not be tempted also to
omit Sections 8.7 8.9 which introduce some fundamental new ideas.)

We shall extend the S-matrix formalism to allow for the presence of an
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external electromagnetic field, i.e. of a field whose quantum fluctuations are
negligible, so that it can be described by an unquantized classical field. As an
application of these ideas we shall consider the scattering of electrons by the
Coulomb field of a nucleus, both elastic scattering (Section 8.7) and inelastic
scattering accompanied by emission of radiation, ie. bremsstrahlung
(Section 8.8).

In studying these Coulomb scattering processes, we shall encounter a new
feature. There exists the possibility of the emission by a charged particle of
one or more very soft photons (i.e. with very little energy). Experimentally,
because of finite energy resolution, the distinction between elastic and
inelastic scattering becomes blurred. This unrealistic separation into elastic
and inelastic scattering events leads to the infrared divergence. In the last
section of this chapter we shall see how this difficulty is resolved.

8.1 THE CROSS-SECTION

We consider a scattering process in which two particles, they may be leptons
or photons, with four-momenta p; = (E;, p;), i = 1, 2, collide and produce N
final particles with momenta p; = (E%,p}), f=1,..., N. Initial and final
particles are assumed to be in definite polarization states. As in Chapter 7, the
indices labelling these states will in general be suppressed. Eq. (7.45),
defining the Feynman amplitude .# for this process, can now be written

] 1/2
Spi=6p+ Qnu)* 5““(2 Py — Zp:) 1 <2VE->

] 1/2
x [Tl 5= 2m)'\ 2 8.1
I;[<2VE’I> H( m) 8.1
where the index ! runs over all external leptons in the process.

Eq. (8.1) corresponds to the limit of an infinite time interval, T — o0, and an
infinite volume, ¥V — co. For finite 7 and V, we would have obtained the
same expression (8.1) with

(2ny* 5“"(2 - pi>

T
V-

12
lim f dt J‘ d3x exp [ix(Z Py—Y pi>:| (8.2)
5:: -T2 1 4

replacedby d7(2 p; — X p). Inderiving the cross-section, it will help totake T
and V finite, to begin with. In this case the transition probability per unit time

L —
w=I|SuYT 83)

R

lim 6TV<Z Py — Z Pi)
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involves the factor [6,,(X p}; — 3. p;)]* For large values of T and ¥ we can
then take

Ory (Z 7Y Pi) = (2n)* 5“"(2 Pr—Y. Pi) (8.4)

and

[5w<2 -y Pi):lz = TV(2rn)*6¥W (Z Py—3 Pi) (8.5)

with errors which tend to zero as 7 — o0 and V' — oo. Hence Eq. (8.3)
becomes

e et (-2 1) ] o)
(8.6)

Eq. (8.6) is the transition rate to one definite final state. To obtain the
transition rate to a group of final states with momenta in the intevals

), Py +dpy),f=1,..., N, we must multiply w by the number of these states
which is

0 vV dp; .
r @)
The differential cross-section is the transition rate into this group of final
states for one scattering centre and unit incident flux. With our choice of
normalization for the states, the volume V which we are considering contains
one scattering centre, and the incident flux is v,/ where v, is the relative
velocity of the colliding particles.
Combining these results with Eq. (8.6), we obtain the required expression
for the differential cross-section
vV - Vdip,
Ve o (27)3

1 d3p’
- 0520~ E) s (T ([T
(8.8)

Eqg. (8.8) holds in any Lorentz frame in which the colliding particles move
collinearly. In such a frame the relative velocity v is given by the expression

E\Eypq = [(PIPZ)2 - m%mg]l/z (8.9)

where m, and m, are the rest masses of the colliding particles. Two important
examples of such frames are the centre-of-mass (CoM) system, and the

8.7)

do=w
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laboratory (Lab) system. In the CoM system we have p; = —p,, and hence
Ip1l | Ipal Ei+E,
el = —_— = " CoM). .10
ta=p +p =Pl—p g (CoM) (8.102)

In the laboratory system, the target particle (particle 2, say) is at rest,
p. =0, and

Dyer = l}‘;—l' (Lab). (8.10b)

1
Eqgs. (8.10) of course also follow from the general result (8.9).

The relativistic invariance of the cross-section formula (8.8) follows from
Eq. (89) and from the Lorentz invariance of d°p/2E for_any four-vector
p=(Ep):

Because of conservation of energy and momentum, the final-state
momenta p’, ..., py are not all independent variables. In order to obtain a
differential cross-section in the independent variables appropriate to a given
situation, we integrate Eq. (8.8) with respect to the remaining variables. We
illustrate this for the frequently occurring case of a process Ieading to a two-
body final state. Eq. (8.8) now becomes

do = f(py, py) 69(py + Py — p1 — p2) d°p d°p) (8.12a)

where

|
' oph) = 2 8.12b
1000 = g (G . ®120)

Integration of Eq. (8.12a) with respect to p’, gives
do = f(p}, py) (E} + E; — Ey — Ep)lpy|*dipy| A (8.13)
where p, = p; + p2 — P1> and integrating Eq. (8.13) over |p}| we obtain®

t 7 U s a(E, + E, ) B 1
do = f(p}, py)Ipy|* A [#:l (8.15)
t d3p/2E can be written in the explicitly invariant form
d3
2= f d*p 8(p* — m2)6(p°) @®.11)

where m? = E2 — p2, §(p°) is the step function (3.54), and the integration is with respect to p°

over the range — oo < p° < 0.
§ We are here using the general relation

a ( 5
( j S 9) 3Lglo 1] & = ff (x,3) 8L(x, )] (é) dg

N [f(x, » ]

= (8.14)
- @970%)y |g=0
NS



8.2 Spin sums 141

where p), = p; + p, — p} and the partial derivative is evaluated with the
polar angles 8], ¢ of the vector p) constant.

To obtain the differential cross-section in the CoM system, we note that in
the CoM system p; = —p,. From

(Epr=mp)? +1ppl%,  f=12, (8.16)
we find
J(E| + E}) E,+E,
e = P e 8.17)
anl - PR, (

and combining Egs. (8.15), (8.12b), (8.10a) and (8.17) we obtain the CoM
differential cross-section

do S S | 1 1A )
(d_IM)coM 64n(E; + E,) |py (H (2m1)>lﬂl (8.18)

Finally, we note that all the cross-section formulae which we have derived
apply irrespective of whether identical particles are present or not. However,
on calculating total cross-sections in cases where two or more final-state
particles are identical, one must integrate only over those ranges of angles
which correspond to physically distinguishable events. For example, if the
CoM cross-section (8.18) refers to a process with two identical particles in the
final state, then the scattering angles (8%, ¢)) =(a, ) and (8, ¢)) =
(mr — o, ® + B) describe the same process. Hence the total CoM cross-section
is obtained by integrating Eq. (8.18) only over the forward hemisphere
0<6, <in, ie

do
tot 3 _ 1 ’ N .
o8y = J d(cos 6 )f do¢) <d91>c°m =3 J. dQ; <d91>com (8.19)

where the last integral is over the complete solid angle 4, as indicated.

8.2 SPIN SUMS ‘

In the last section we considered a reaction in which the initial and final
states are completely specified, including the polarization states of the leptons
and photons present initially and finally. In many experiments, the colliding
particles are unpolarized and the polarizations of the final-state particles are
not detected. To obtain the corresponding unpolarized cross-section from Eq.
(8.8), we must average |.#|? over all initial polarization states, and we must
sum it over all final polarization states. In this section we shall show how to
obtain these averages and sums over initial and final lepton spins. We shall
find that the unpolarized cross-section can always be expressed in terms of
traces of products of y-matrices.
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Consider a Feynman amplitude of the form

M = uy(p)u(p). (8.20)

This occurs, for example, for Compton scattering [see Fig. 7.12 and Eqgs.
(7.38)]. Here the spinors u,.(p) and ii(p’) completely specify the momenta and
spins of the electron in the initial and final states, and the operator I is a
4 x 4 matrix built up out of y-matrices. Eq. (8.20) gives rise to an unpolarized
cross-section proportional to

2

Y |l (8.21)

=1s=1

x=1
"'2

MN

where we have averaged over initial spins (3 3_,) and summed over final spins
(Zs). Defining

'=9Thyo, (8.22)

we can write Eq. (8.21) as

=33 Y @@ u@)@mT um)). (8.23)

r

Writing out the spinor indices explicitly, this can be written

X= %(Z usé(p’)ﬁsa(l)’)> Faﬂ(z urﬂ(l’)“rv(l’)) Tva-
We introduce the positive energy projection operator [Eqgs. (A.31) and
(A.35)],

2
Ad®) = ("’—*—'ﬁ> = 3 wl®)ins®) (8.242)

in order to eliminate the sums over positive energy states. This leads to our
final result

X = %AL(P')FaﬂA;y(P)TvJ

=3 Tr[A*(@)A*(p)I]
1 F+m pf +m
=3Tr [ e } (8.25)

In addition to the amplitude (8.20), involving the absorption and
emission of an external negative lepton, there are also Feynman amplitudes

* Equation numbers (A.-) refer to equations in Appendix A at the end of the book. This
appendix gives a self-contained account of the properties of Dirac spinors, etc. which we here
require, and a reader not familiar with these is advised to study the appendix.
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of the form

# = v(p")'v(p) (8.26a)
# = u(p'v.(p) (8.26b)
M = 5(p)u(p). (8.26¢)

These represent: (a) absorption and emission of a positive lepton, as in
Compton scattering by positrons [Eq. (7.39) and Fig. 7.13]; (b) creation of a
lepton pair, as in 2y — e* e~ (Fig. 7.5); and (c) annihilation of a lepton pair, as
ine*e™ — 2y (Fig. 7.4).

The spin sums for these cases are performed as for the case which we
considered in detail, but using the negative energy projection operator [Egs.
(A.31) and (A.35)]

—_ 2 .
A(p) = _<F’_'"> = 3. vra(B)irs(p) (8.24b)

2m

to eliminate sums over negative energy states. For example, Eq. (8.26b) leads
to

322 M= 3 Tr[A*@)TA~(T]

=%Tr|:¢’+ml"t_—m } (8.27)

2m 2m

Spin sums, and consequently traces like Egs. (8.25) and (8.27), frequently
occur in practice. There exist simple techniques for calculating such traces.
These use algebraic identities for y-matrices (see Appendix A, Section A.2)
and some general rules for calculating the traces of products of y-matrices (see
Section A.3). Later in this chapter we shall repeatedly apply these results and
methods in calculating the unpolarized cross-sections for various processes in
QED.

To conclude this section we briefly discuss how to calculate the spin
polarization properties of a process. This involves evaluating |.#|? for specific
initial and final spin states. This can be done either by using a specific matrix
representation for the spinors or by employing helicity or spin projection
operators to select the appropriate spin states. The latter technique again
leads to traces and is usually the more convenient one.

We shall illustrate this method for the particular process resultmg from
the Feynman amplitude (8.20) in which the incident electron has positive
helicity and the outgoing electron has negative helicity. The cross-section for
this helicity flip process is proportional to

X = lia(p)Tui(p)l?
= (d3(p) T, (p) )it (p)f u2(p')).- . (8.28)
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We introduce the helicity projection operators
M(p) =31 + o) (A.37)

which have the properties

I (u(p) = 61,u(p),  TI7(Pup) = 62ru(p). (A.40)
Eq. (8.28) then becomes

X = (ax(p)T I (P)us (P (I TI™ (p")u(p))
= Z Z (@) T * (p)u(p)) (it (p) T TI ™ (D))

=Tr [A*(p)ITT*(PA* ()TTI™(P)], (8.29)

where the last line follows from Egs. (8.23) and (8.25) with I" and T replaced
by I'lT*(p) and TTI(p).

In the relativistic limit E > m, the helicity projection operators (A.40)
simplify to

@) =1+ (E»m) (A.43)

which also leads to a considerable simplification of Eq. (8.29) in the
relativistic limit E > m, E' » m.

83 PHOTON POLARIZATION SUMS

In the last section we showed how to perform spin sums in order to
obtain unpolarized cross-sections. We now consider the corresponding
photon polarization sums. We met anexample of this for Thomson scattering
in Section 1.4.4, where we first obtained the fully polarized cross-section, Eq.
(1.69), and then explicitly performed the summing and averaging over final
and initial polarizations by means of Eq. (1.71). An alternative covariant
formalism exists for obtaining the unpolarized cross-section directly. This
formalism depends on the gauge invariance of the theory, the consequences of
which we shall now consider in more detail.

Gauge invariance of the theory implies the gauge invariance of the matrix
elements, ie. of the Feynman amplitudes. It is of course only the matrix
element itself, corresponding to the sum of all possible Feynman graphs in a
given order of perturbation theory, which must be gauge-invariant. The
contributions to the amplitude from individual Feynman graphs are in
general not gauge-invariant. For example, for Compton scattering the
individual amplitudes .#, and .#, Eqs. (7.38a) and (7.38b), are not gauge
invariant, but their sum, (4, + .#,), is. (The verification of this statement,
using the method to be developed in this section, is left as a problem for the
reader. See Problem 8.7.)
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For any process involving external photons, the Feynman amplitude
.# 1s of the form 1.3
M= l.‘:l(k|)l:£‘2(kz)..../{,ﬂ___(kl Jka, L) (8.30)
with one polarization vector ¢(k) for each external photon, and the tensor
amplitude . #,, . (k,, k;,...) independent of these polarization vectors. [ This
follows from our fourth Feynman rule, Eqs. (7.49¢) and (7.49f). We are again
using real polarization vectors.]

The polarization vectors are of course gauge-dependent. For example, for a
free photon, described in a Lorentz gauge by the plane wave

A*(x) = const. g*(k) e*i**
the gauge transformation

A*(x) —» A*(x) + 0*f(x),  with f(x) =f(k) ptikx

implies
ef(k) et — [e4(k) £ ik*f(k)] et™**. " (8.31)
Invariance of the amplitude (8.30) under this transformation requires
Ky, (Ky, ka,..)=Kt,g (Ky,ky,..)="""=0, (8.32)

ic. when any external photon polarization vector is replaced by the
corresponding four-momentum, the amplitude must vanish.

To illustrate how Eq. (8.32) is used to calculate photon polarization sums,
we consider, as simple example, the matrix element

M) = EX(K)A(K)

corresponding to a process involving one external photon. The gauge
invariance now implies

k=M (k) = 0. (8.33)
The unpolarized cross-section for the process is proportional to
X = 3007 = MMM 3 EORK. (834
Using the relation
r‘; e2(k)ef(k) = —g™ — (k:z)z [k®k® — (kn)(k*n® + k*n®)],  (8.35)

which follows from Egs. (5.39) and (5.40) for a real photon (k* = 0), and the
gauge condition (8.33), we at once obtain from Eq. (8.34)

2
ZI | (K)? = — (). # (k). . (8.36)

A T R IRV N Y
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Eq. (8.36) is our desired result, and it is easily extended to transitions
involving several external photons. This formalism necessitates working in a
general Lorentz gauge, as the explicit gauge invariance of the matrix
element may be lost in a particular gauge. (We shall meet an example of this
when discussing Compton scattering in Section 8.6.) However, in practice, it
may be advantageous to choose a particular gauge, which simplifies the
algebra of the trace sums, and to carry out the photon polarization sums
explicitly, as was done for Thomson scattering in Section 1.4.4. The use of both
techniques will be illustrated later in this chapter (see Sections 8.6 and 8.8 on
Compton scattering and on bremsstrahlung).

84 LEPTON PAIR PRODUCTION IN (e*e”) COLLISIONS

As a first illustration of the use of the above methods in calculating processes
to lowest non-vanishing order of perturbation theory, we shall consider the
processes in which an electron—positron pair annihilates in collision,
producing a charged lepton pair (I*17). These processes are of considerable
interest and have been studied experimentally over a wide range of energies.
In this section we shall take the final lepton pair to be muons or tauons, but
not electrons. The case of Bhabha scattering (ie. e*e™ — e*e™) will be con-
sidered in the next section.
We already considered the process

et (p1,71) + e (p2, r2) = 17 (py, s1) + 17 (ph, 52) (8.37)
(where | = g, 7,...) in Section 7.4. Its Feynman amplitude, corresponding to
the Feynman graph of Fig. 7.17, is given by Eq. (7.61) which we now write in
slightly modified notation as

My, 12, 51, 52) = 1€2 [, (95)7a0s, (010 P2)? Lor,(P)7"tr, (P2)) o)
2

1

(p, +
(8.38)
The labels (/) and (e) distinguish quantities referring to leptons and to
electrons. In Eq. (8.38) we have dropped the term (+i¢) in the photon
propagator. This term is only of significance at the pole of the propagator,

and in the present case (p, + p,)?> = 4m?2 cannot vanish.
For the unpolarized cross-section we require

X=1 XX XY | #r 2 s0.5)2 (8.39)

ry r2 sy s2

Using the hermiticity condition y*' = y%y*y° [Eq. (A.6)], Eq. (8.38) gives

3 = ’ / 1 =
MH*(ry, 72,81, 52) = ~lez[vsl(lh)7’111452(112)](1) PR [urz(l)z)?ﬂvrl(l)l)](e)
(p1 + p2)
(8.40)
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and Eq. (8.39) becomes

ot
X=—-——— AppBeo™. 8.41
4Lps + p2) P " &40
Here Agsp is given by
Agep = Z Z [(asz(l’,z)?avsl(l),l))(ﬁs,(P&)Vﬂ“sz(l’,z))]u)
Sy Sz
Brtm  pr—m
=T . ) 41
T[ o e om 8 (8.41a)

where we used the energy projection operators (8.24a) and (8.24b). Similarly
one obtains

Pr—me potm ‘
=T * LRV 41
B f [ 2m, 4 2m, Y (8.41b)

The traces (8.41a) and (8.41b) are easily evaluated using the results of
Appendix A, Sections A.2and A.3. Since the trace of a product of anodd number
of -matrices vanishes [Eq. (A.16)], Eq. (8.41a) becomes

1
Ayag = am? [Tr (#27.#175) — mi Tr (7275)],

and from Egs. (A.17) this gives

1
Awop = 3 [P1aP2p + P2uP'tp — (m? + Py D) das).- (8.42a)
1 5
Similarly one finds,
1
B = 3 [P P4 + p5 P4 — (m2 + p1p2)g*]. (8.42b)

Substituting Eqgs. (8.42) into Eq. (8.41), one obtains

Y et
2mZmi[(py + p2)

3E {(P1P)(P2D5) + (P1P2)P2DY)
+m(pypy) + mi(pyp2) + 2mimi}.  (8.43)
So far we have worked in an arbitrary reference frame. We now specialize to

the CoM frame, as specified in Fig. 8.1. For experiments carried out with
collidingelectron and positron beams this is the same as the laboratory system.}

‘ This is, of course, the exceptional situation. More usually, the ‘target’ particle is at rest in the
laboratory frame; see Eq. (8.10b).
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{+
pr=(£,p")
7
,I
,I
s%g
p=(E,p) e p2=(£,-p)
. ,/ .
,I

p2'=(f,-p')
I

Fig. 8.1. Kinematics for the process e*e™ — "]~ in the
CoM system.

The kinematic factors occuring in Eq. (8.43) now take the form
p1Py = p2py = E* —pp'cos 6,  pip =papy = E* + pp’ cos §
pip2 = E* + p%, pip; = E* +p? (8.442)

(p1 + p2)* = 4E*
where

p=pl, =19l (8.44b)

Furthermore, since E > m, ~ 207m.,, it is a very good approximation to take
p = |p| = E, and to neglect terms proportional to m?2 inside the curly brackets
in Eq. (8.43). On making these approximations and substituting Eqs. (8.43)
and (8.44) in the CoM cross-section formula (8.18), we finally obtain

do «* [P\ _, 5 . 2
— =—\= ' 0 .
<dQ>C0M 16E% <E>(E + m{ + p'? cos? 0) (8.452)
for the differential cross-section, and
no® (p .
Oor = 4—EI (E) [E2 + m12 + %P 2] (845b)

for the total cross-section. In the extreme relativistic limit, E > m;, these
formulae reduce to the much quoted

do o?
) =% _a 2
(dQ)CoM egz L Heos 9

na?

3E?

(E > my). (8.46)

Oior =
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o IR 1 1 | J
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total CoM energy 2£ (GeV) —»

Fig. 8.2. E? x 0,4 (in arbitrary units) for the
process e"e” — 1"t~ near threshold 2E = 2m,.
[After W. Bacino et al., Phys. Rev. Lett. 41 (1978),
13.] }: experimental data; curve: fit of cross-section
formula (8.45b) with m, = 1782 MeV.

Both the processes ete™ — u*p~ and ete™ — ¥ 1~ have been extensively
studied over a wide range of energies. For the 7, which was first discovered in
this reaction, the threshold region is of particular interest. The 7 is a highly
unstable particle. It is detected by its decay products so that its precise mass
18 not easy to determine. The best values are obtained by fitting the total
cross-section (8.45b) to the experimental data in the threshold region. Fig. 8.2
shows the excellent agreement obtained in such a fit to the experiments of W.
Bacino et al., Phys. Rev. Lett., 41 (1978), 13. The tauon mass obtained in this
way is m. = 178212 MeV. Other experiments are compatible with this value
but with somewhat larger errors.

At relativistic energies the predictions of Eq. (8.46) are in excellent
agreement with experiment. Typical results shown in Fig. 8.3 which is based
on the work of D. P. Barber et al., Phys. Rev. Lett., 43 (1979), 1915. These
high-energy results are of great interest since they probe the interaction down
10 very small distances and so represent a severe test of QED. In the CoM
system, the energy of the virtual photon in the process is 2E, implying a
timescale of order #/2E and a corresponding distance scale of order #c/2E.
For E &~ 15 GeV, this corresponds to a distance of the order 7 x 1073 f. The
agreement between theory and experiment implies that even at these very

* The decay mechanism and lifetime of the t will be discussed in Section 11.6.1.
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Fig. 8.3. The total cross-sections (in nb) for the processes ete™ — u*u~ and
ete” — t*17 at relativistic energies. [After D. P. Barber et al., Phys. Rev. Lett. 43,
(1979) 1915.] §: experimental data; curves: theoretical cross-section formula (8.46).

small distances the electron, muon and tauon are adequately described as
point charges. This small value should be compared with the experimental
r.m.s. charge radius of the proton which is of order 0.8 f.

Eqgs. (8.45) also predict substantial cross-sections for the (I*17) production
of any other charged leptons which may exist in the sequence e, i, 7, ....
Consequently, these should be comparatively easy to detect in the (e*e™)
annihilation process. Current experiments show that no such particle exists
with mass less than about 15 GeV.

8.5 BHABHA SCATTERING

We now consider elastic e*e™ scattering. This process is a little more
complicated than those considered in the last section since, in addition
to the annihilation diagram [Figs. 7.17 or 7.7(b)], the scattering diagram
[Fig. 7.7(a)] also contributes. The Feynman amplitude for the process

et (p1,r1) + e (p2, r2) = ¥ (py, 51) + e (P, 52) (8.47)
is
M= M+ M

where 4, and #, correspond to the scattering and annihilation diagrams
and are given by «

My = —132[u(l’2)?a“(l’2)]

Rl

My = lez[u(Pz)'yaU(Pl)]

1
(r: — P2 [o(p1)y v(p1)] (8.48a)

i+ P2 [o(p1)y"u(p2)]- (8.48b)
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We have here suppressed the spin indices again. .4, is of course just the
amplitude (8.38) with e*e™ for the final state lepton pair. We again note the
rclative minus sign between these two terms corresponding to Feynman rule
8 (Section 7.3).

We shall evaluate the cross-section for this process in the CoM system,
restricting ourselves for simplicity to the important case of the relativistic
high-energy limit. The kinematics are now defined by Eqgs. (8.44) with p’ =p
and E >» m(=m,). The cross-section formula (8.18) now leads to

o M 4 Xt Xt X3 (8.49)
do oM - 16ﬂ2E2 aa bb ab ab/s B
where _
Xaa=1 ) M (8.50a)
spins
X =% Z I'/”blz (8.50b)
spins
Xab =% Z My M, (8500)
spins

the summations being over the spins of all four fermions.
The term X, follows at once as a special case of X, Eq. (8.43), withm, = m

and E » m;
4

e 5 m?
Xbb:W 1+COS 0+O F . (8.51)

The evaluation of X,, is essentially similar to that of X and is left as an
cxcercise for the reader. The result is
4

Xaa = ,
2m*[(p; — py)

= ¢ L+ cost 2+ o™ 8.52
= 8m* sin® (02) costa+O\ET) | ®.52)

The interference term X,,, Eq. (8.50c), is more complicated, and we shall
give its evaluation in some detail in order to illustrate how such more com-
plicated spin sums can be handled simply. From Egs. (8.50c) and (8.48),

aE {(p1P2)(P1P2) + (P1P2)(P2Py) + O(E*m?)}

_e4

= 4([71 _ p,l)z(p1 T p2)2 z {[ﬁ(l)'z)?au(l)z)][ﬁ(l)z)?ﬂv(l’l)]

x [9(p1)y*v(p')1[0(py )y u(@y)]}
—e* Tr{¢’2+m ¢2+my pil—myapi’l—myﬂ}

X ab

T 4(p1 — p)X(ps + p2)? m " om P om o

= T
& — P p1 T P

I (ParaP20p 17" F1Y") + O(E*m?)).
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We must therefore evaluate the trace of a product of eight y-matrices. It is
usually possible and highly desirable to simplify such a product before taking
the trace, rather than blindly use Eq. (A.18c). The contraction identities
(Appendix A, Section A.2) are particularly useful in this respect. By means of

VYR = =20V ViVaVEY = 4ap (A.142)

we find that the trace in X,, equals

~2Tr (ﬁ’zﬁﬁﬂﬁzﬁ'ﬁﬂ) = —8(p2py) Tr (F281) = —32(p2p1)(P2P1),

whence X,, becomes

4
= I, p"e)z(pl Ty Lp1P2)(P2PY) + O m?)]
1
_ o4 ! m2
- m [“’54 5t 0(55)]- (8.53)

We see from this equation that X, is real. Hence substituting Eqgs. (8.51)-
(8.53) in Eq. (8.49), we obtain for the CoM differential cross-section in the
high-energy limit (E > m)

do _ o [T4+cos*(6/2) 1+cos’ 2cos*(6/2)
a0 Je " BEZ| simt2) T 2 sin? (6/2)

(8.54)

- The three terms in this equation correspond to the photon exchange
diagram, Fig. 7.7(a), the annihilation diagram 7.7(b), and the interference
term between them. It should be compared with the corresponding result
(8.46) for the process ete™ — [*]~ with | # e, when only the annihilation
diagram is present.

At small angles, the exchange term dominates, giving rise to an infinite
cross-section in the forward direction, § = 0, and an infinite total cross-
section. These features are a consequence of the infinite range of the
electromagnetic forces or, equivalently, of the zero mass of the photon. As
8 — 0, the four-momentum k* = (p; — p)* of the exchanged photon tends to
zero, and the factor

1 1

K tie  (p—py)? +ie

in the photon propagator diverges, from which the divergence of the
amplitude (8.48a) and of the cross-section (8.54) follows.}

At large angles the photon exchange term and the annihilation term are of
comparable importance, and sensitive to the short distance behaviour. For

* As is often done, we suppressed the term +i¢ in the photon propagator in Eq. (8.48a). This
term is only relevant at the pole, (p; — p})? = 0.
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Fig. 8.4. The differential cross-section (da/dQ)c,y for

Bhabha scattering, e*te”™ — e*e”, at the total CoM

energy 2E = 34 GeV, [After H. J. Behrend et al., Phys.

Lert, 103B (1981), 148.] & experimental data; curve:
QED cross-section formula (8.54).

the annihilation term this was discussed in the last section. For the ex-
chuange diagram, the exchanged photon has the wave number [k| = |p; — p}| =
2E sin (6/2), with an associated wavelength A = 27/|k|.

Experimentally, the predicted behaviour has been confirmed over a wide
range of energies and angles, and the interaction has been tested down to very
short distances, comparable to those probed in the e*e™ - u*u~ and
¢'e” — 17" experiments which were discussed in the last section. Typical
results for Bhabha scattering are shown in Fig. 8.4.

8.6 COMPTON SCATTERING

We shall now derive the cross-section for Compton scattering. In this process
a photon is present in both the initial and final states, and we shall apply our
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earlier results to carry out the photon polarization sums, as well as the elec-
tron spin sums.

Suppose that in the initial state we have an electron with momentum
p = (E, p) in the spin state u = u,(p) and a photon with momentum k = (w, k)
and polarization vector ¢ = g((k), and that the corresponding quantities for
the final state are p’ = (E’, p'), ¥ = 4,(p), and k' = (', k), ¢ = &(k"). The
differential cross-section for this process is given by Egs. (8.15) and (8.12b) as

do mo AE + o)\ T,
— Vi 8.5
dQ 16n%EE wv,, l:( oo’ 00 4| (8.55)

where .# is the Feynman amplitude for this transition, and (6, ¢) are the polar
angles of k', and dQ = sin § d@ d¢ is the corresponding element of solid angle.
We shall take k as polar coordinate axis, so that 8 is the photon scattering
angle: k-k’' = ww' cos 6. In Eq. (8.55), initial and final momenta are related
by the conservation laws

p+k=p +k. (8.56)

In lowest order, the Feynman amplitude .# results from the two Feynman
graphs in Figs. 7.12(a) and 7.12(b), and the corresponding contributions to
# are given by Eqs. (7.38a) and (7.38b). Defining

flEp+k’ .fZEp_k” (8'57)
we obtain .# from these equations as
M= M+ My (8.58)
where
o i MR T i
M, = —le 2000 ) Ay = e 2(K) 8.59)

These results refer to a general reference frame. In most experiments, the
photon beam is incident on a target of nearly stationary electrons. We shall
now specialize Eq. (8.55) to the laboratory frame in which p = (m, 0, 0, 0) and

pP=k—k, (8.60a)
E =[m?+ (k —k)?]'?2 =[m* + 0? + 0'? — 200 cos 612 (8.60b)
From Eq. (8.56) we have generally
pk=p'k + kk = pk' + k'k
which in the laboratory system reduces to

mw
@ “m+ o(l —cos6) (®61)
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This equation gives the energy shift of the scattered photon due to the recoil
of the target electron. From Eq. (8.60b) we find

(6(E’ + w’)) _ mo 862)
7 9¢ .

aa) - E!a)r

so that Eq. (8.55) gives for the differential cross-section in the laboratory

frame
do 1 (o', :
- - hadll 8.63
(dQ)Lah (4n)? <a)> A1 (863)

The cross-sections (8.55) and (8.63) are fully polarized, ie. both initial and
final electrons and photons are in definite polarization states. To obtain the
cross-section for Compton scattering by an unpolarized electron target, and
with the spin of the final electron undetected, we must sum and average the
above cross-section formulas over final and initial electron spins. To obtain
the unpolarized cross-section, we must also sum and average over final and
initial photon polarizations. We shall illustrate both the methods of Section
1.4.4 and of Section 8.3 for handling photon polarization.

To obtain the unpolarized cross-section directly, we use the covariant

method of Section 8.3. Writing .
M= e Ly M, (8.64)
we obtain
DIDWNIES DIl (8.65)

where the summations are over initial and final electron spins and photon
polarizations. Eq. (8.65) is the analogue of Eq. (8.36) for the case of two
cxternal photons. Carrying out the spin summations, we obtain from Egs.
(8.65) and (8.58)—(8.59)

YN M =YY (M M+ MME + MME
pol spin pol spin
_ e {Xaa L Ko Xat Xba}
64m* |(pk)*  (pk'y*  (pk)(pk)

(8.66)

where

Xoa = Tr{y*(f1 + myy"(p + myp(f1 + myps(# + m)}  (8.672)
Xoo = Tr(3%(fs + mpyP(p + myys(fs + mpy(# + m)}  (8.67b)
Xav = Tr {YH(f + m)y*(F + myyp(fz + myya(F + m)} (8.67¢)
Xoa = Tr {7%(fs + myyP(P + m)p(fi + m)ys(§ + m)}. (8.67d)
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Note that the effect of the substitutions

ke -k, e, (8.68a)
is to induce the transformations
heth, My My (8.68b)
and hence
Xaa > Xbb, X o X, (8.68¢)

We need therefore only calculate X ,, and X, from first principles. From Eq.
(8.66), X, = X %,. Furthermore, it follows from Eqgs. (8.67c) and (8.67d) and
the general property (A.20a) of y-matrices, that X,, = X,. Hence X, is real,
and it is symmetric with respect to the transformation (8.68a), which provides
two useful checks in its calculation.

The traces in Eqs. (8.67) involve products of up to eight y-matrices. Their
computation is much simplified by the use of the contraction identities
(Appendix A, Section A.2) which eliminate four y-matrices. We illustrate this
for X,,. The trace in Eq. (8.67a) contains the factor

Y=y + mpy*(B + myfi +mvg
= Y"(Al + m) (=28 + dm)(£ + m)y,
= 47 pf; + mL—16(pfy) + 16f1] + m*(4p — 16f) + 16m>.
Hence, using Eqs. (A.16) and (A.18a), (A.18b), one obtains directly
Xoo = Tr{Y(# + m)}
= 16{2(f1p)(/1P) — f1(pP") + m*[—4(pf)) + 4f1]

+m?[(pp) — 4(f1p)] + 4m*}. (8.69)
If we express all quantities in terms of the three linearly independent scalars
pP=p*=m?  pk=pk, pk =pk, (8.70)
X .. simplifies to
X, = 32[m* + m*(pk) + (pk)(pk))]. (8.71a)
From Egs. (8.68) we have at once '
Xop = 32[m* — m*(pk’) + (pk)(pk)]. (8.71b)

The interference term X,,, Eq. (8.67¢c), is similarly computed with the
result

X = 16m?[2m? + (pk) — (pk)]. (8.71¢c)
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As expected, X,, is real and symmetric, i.e. the substitution ke —Kk
transforms X, into

Xpa = Xpp. (8.71d)
Substituting Egs. (8.71a)—(8.71d) into Eq. (8.66), we obtain

Y Y g =2 {(”" +”"')

pol spin I'd pk

+ 2m? L +m* Loy (8.72)
pk pk pk pk

In the laboratory system, pk = mw, pk’ = mw’, and from Eq. (8.61)

1 1
————,=—1—(cos(9—1).
o o m

Hence Eq. (8.72) reduces to

’

[%Z z "/”IZjI 2942 {(1), +%_ sin 0} (873)
Lab

pol spin

and Eq. (8.63) gives the unpolarized cross-section

do o? o'\ (w w’ . 5 . -
(EQ_)> *W@ {5 T "}' ®79)
By means of Eq. (8.61), o’ can of course be eliminated altogether from this
cquation. In the low-energy limit @ «m, we have o’ =~ w, i.e. the kinetic
cnergy of the recoil electron is negligible, and Eq. (8.74) reduces to the
Thomson scattering cross-section, Eq. (1.69a).

We shall now derive the cross-section for initial and final photons in states
of definite polarization, i.e. summing and averaging over electron spins only.
On also summing and averaging over photon polarizations, using the method
of Section 1.4.4, we shall regain the result (8.74). In this case, the trace
calculations cannot be simplified through use of the contraction identities.
However, they are greatly facilitated by a suitable choice of gauge. In any
reference frame it is possible to find a Lorentz gauge in which the vacuum
contains no longitudinal or scalar photons, and free photons are transverse
(see Section 5.2). In this gauge, the polarization vectors of the external
photons are of the form ¢ = (0, €), ¢’ = (0, "), with

ek = —g'k=0, ek= —¢-k'=0. (8.75a)

The analysis is further simplified if we work in the laboratory frame,
p = (m,0,0,0), in which we also have

pe = pe’ = 0. (8.75b)
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It follows from the anticommutation relations [y% y#], = 2¢* and the Dirac
equation (p — myu(p) = 0, that

Piu = —mgu, Pfu= —mfu,
so that the matrix elements (8.59) simplify to

Lk .
7 M )

Note that Eq. (8.76) does not give a gauge-invariant expression for the matrix
element .# = #, + #,. For example, the gauge transformation ¢ — ¢ 4+ Ak,
where A is a constant, leads to .#, — .#, (since kk = k? = 0) but A+ M+,
This is of course due to the fact that we dropped the terms pe and pe’ which
are zero in our gauge.

Summing and averaging over electron spins now gives

(8.76)

4
VLM Gt ol o] O
where
Yoo = Tr {{ K4(F + m)eke (' + m)} (8.78a)
Yoo = Tr {g'¢(F + mEK P + m)} (8.78b)
Yo = Tr {£k(P + m¢ K #(p' + m)} (8.78¢)
Yoo = Tr {{K¢(F + mgke (F + m)}. (8.78d)
Substituting k& — k', e — ¢, again leads to #, — .#,, and
Yaa < Yobs Yoo Yias (8.79)

and Yo=Y = Y:b.
The traces in Eqs. (8.78) contain products of up to eight y-matrices. We
reduce this number using

AB = —BA + 2AB. (8.802)
For A = B, we have
Ad = A2, (8.80b)
and, in particular,
P=m  HE=0.  fi=gf=—1 (8.80c)
For AB =0, we have
AB = —BA, (8.80d)

which will be particularly useful on account of Egs. (8.75).
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We illustrate the use of these teicks by computing Y,,. Since kfgk =
Kk = 0, Eq. (8.78a) reduces to

Yoo = Tr {# kepehi ¥} = Tr {£kpke '}
since #pf = — pf¢ = p. Permuting p and £, and using kk = 0, we obtain

Yoo = 2(pk) Tr {¢k¢'#'} = 8(pR[2(e K)(eP") + (kp)]

= 8(pl)[2(e'k)* + (pK))], (8.81a)
since p' — k = p — k' implies ¢p’ = ¢’k and kp’ = pk'. From Eq. (8.79) we have
Yoo = —8(pk)[2(ek’)? — (pk)]. (8.81b)

The interference term Y,,,, Eq. (8.78c), is more complicated to evaluate. Its
simplification depends essentially on writing p' = p + k — k', so that the
orthogonality relations (8.75) and Egs. (8.80) can be used to the full. In this
way one finds

Yar = 8(pk)(PK)[2Aee))* — 1] — 8(ke')*(pk’) + 8(K'e)*(pk), (8.81c)

which is real and symmetric (ie. Y,, = Yy,). From Egs. (8.81), (8.77) and
(8.63), one obtains the differential cross-section for Compton scattering of
polarized photons

do o (o o o
-~ = [} {4+ 4 4(eH)2 -2 8.82
<dQ>Lab,pol 4m? <w> {wl * @ * (88) ) . ( )

Eq. (8.82) is known as the Klein—Nishina formula. From it one obtains
the unpolarized cross-section by summing and averaging over final and initial
photon polarizations. Since ¢¢' = —g- €/, one can write Eq. (1.71)

1Y (ee)? = 4(1 + cos? 6), (8.83)
pol

and applying this equation to Eq. (8.82) one at once regains the unpolarized
cross-section formula (8.74).

8.7 SCATTERING BY AN EXTERNAL FIELD

So far, the electromagnetic field has been described by a quantized field,
involving photon creation and annihilation operators. In some problems,
where the quantum fluctuations of the field are unimportant, it may be
adequate to describe the field as a purely classical function of the space—time
coordinates. An example would be the scattering of electrons or positrons by
an applied ‘external’ electromagnetic field A3(x), such as the Coulomb field of
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e e

Fig. 8.5. Feynman graph in configuration space
for electron scattering by an external source,
marked by the cross.

a heavy r nucleus.! More generally, one may have to consider both types of
field, replacing A*(x) by the sum of the quantized and the classical fields,
A*(x) + A(x). The S-matrix expansion of QED, Egs. (7.1) and (7.2), then
becomes

5= z (G4 f f déxy ... dx, T{NTHA + AWl .. NIFUA + AV, ).
8.84)

As a simple example, we consider the scattering of an electron by a static
external field

Ax) = AXx) =

1 .
d3qe*42 8.85
any? f qe " ANg) (8.83)
where the Fourier transform of the field in momentum space, AX(q), has been
introduced for later convenience. In lowest order, the scattering arises from
the first-order term in Eq. (8.84):

SN = je fd“xx]f‘(x)ﬁe(x)zﬁ *(x). (8.86)

This is represented by the Feynman diagram in Fig. 8.5, in which the source
of the classical field is represented by a cross. Consider the scattering of an
electron from a state |i ), with momentum p = (E, p) and spinor u(p), to a

# The meaning of ‘external’ in the present context and in the description of Feynman graphs
(where we talk of external lines, particles, etc.) should not be confused.
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state | />, with momentum p’” = (£, p') and spinor u,(p’). The evaluation of
the matrix clement < f)Si> for this transition is similar to that in Section
7.2.1 for electron scattering by the quantized field. Going over to momentum
space, one easily obtains

m \2( m \}2
<f|sz“|i>=[(h)é(E'—E)(;E) (VE) }/t (8.87)

where
M = iei(p)Ae(q = p' — PuAp)- (8.88)

These equations should be compared with Eqgs. (7.31) and (7.32) for the
case of the quantized field. Unlike Eq. (7.31), Eq. (8.87) does not contain a
momentum conserving d-function, since we are ignoring the momentum of
the source of the field, which experiences a recoil, ¢ = p' — p being the
momentum transferred to the particle by the field. On the other hand, the
d-function in Eq. (8.87) leads to conservation of the electron’s energy, i.e. to
clastic scattering (|p’| = |p|). It implies that the recoil energy of the source is
negligible, and is a consequence of the static field assumption (8.85). The
Fcynman amplitude (8.88) is represented by the momentum space Feynman
diagram of Fig. 8.6, in which it must be remembered that |p'| = |p|.

In addition to the replacement ’

@Qmy* 0Y(p’ + k' — p) > 2m) 3(E' — E)

Eqs. (8.87) and (8.88) differ from Egs. (7.31) and (7.32) in that the photon
factors (1/2Vw,)'e,(k’) are replaced by the external field factor A..(q).
These results are easily generalized and lead to the following two changes

e (p,r) e (p',s)

Fig. 8.6. Feynman graph in momentum space for electron
scattering by an external source; |p| = [pl.



162 QED processes in lowest order  Chap. 8

in the Feynman rules, discussed in Section 7.3, in order to allow for the
interaction with an external static field.

(i) In Eq. (7.45), relating the Feynman amplitude .# of a process to its S-
matrix element {f|S|i), we must make the replacement

@2n)* 5P, — P;) » (2m) 8(E,; — E;) (8.89)

where E; and E; are the total energies of all particles present in the initial and
final states.

(i1) Corresponding to rule 4, Eqs. (7.49), for external lines (i.e. particles
present initially or finally), we must add the following rule to the Feynman
rules 1-8 of Section 7.3:

9. For each interaction of a charged particle with an external static field
A.(x), write a factor

Aelq) = J d3x e—iq-era(X) (c:’)\/\qM . (890)

Here q labelsthe momentum transferred from the field source (marked x )to the
particle. (The energy of the particle is conserved at the vertex.)

‘We next derive the cross-section for electron scattering by an arbitrary static
external field in terms of the corresponding Feynman amplitude .#. The
argument is very similar to that of Section 8.1 and we shall state it only
briefly. Eq. (8.87) leads to the transition probability per unit time

I<f|S“’|l>|2 = 2n6(E’ — E)( ) l.#|2,
where, as in Eq. (8.6), we are considering a long but finite time interval T.
Multiplying w by the density of final states
v a3y _ Vip'|2 dp| dQ _ VIp|E'dE’ dQY
@’ en* @)

and dividing by the incident electron flux v/V = |p|/(VE) gives the differen-
tial cross-section for electron scattering into an element of solid angle
dQ’

de m\? me\? |
aQ = (2_7;> I‘/ﬂlz b (E;{) |us(p )Ae(q)“r(l))|2, (891)

where we substituted Eq. (8.88) for .#, and q = p' — p and |p'| = |p!.

As an example of this result, we consider the scattering of electrons by the
Coulomb field of a heavy nucleus, treated as a point charge (Mott scattering).
In the Coulomb gauge, the potential is given by

. A%(x) = ( 4Z|e| 0,0, 0) (892a)
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with the momentum space potential

A%q) = (I 30,0, 0) (8.92b)

On substituting Eq. (8.92b) in Eq. (8.91), and summing and averaging over
clectron spins, one obtains the unpolarized cross-section for Coulomb
scattering

do  (2maZ )2 N
o~ ¢ &
_ (a )2 T v 0 1]
2(ozZ)2

lql*

Introducing the scattering angle 8, we have
p'p=Ip’cosd, lg* =Ip' —pl* =4Ip*sin® (6/2),  (8.94)
and, with |p| = Ev, Eq. (8.93a) reduces to the Mott scattering formula

do _ (aZ)?
dQ ~ 4E*v*sin* (6/2)

|0 °ur(p)I?

(E* +pp +md). (8.93a)

[1 — v?sin? (6/2)] (8.93b)

for the scattering of relativistic electrons by a Coulomb field. In the non-
relativistic limit, this reduces to the Rutherford scattering formula

do (aZ)?

dQ ~ am*v* sin® (6/2) 8.95)

We have here considered the nucleus as a point charge. We only mention
that the treatment is easily modified to apply to the realistic case of a nucleus
whose charge is distributed over a finite volume. For high-energy electrons,
this leads to an important method of investigating the nuclear charge distri-
bution. In particular, one obtains in this way the r.m.s. radius of the charge
distribution which has previously been referred to in connection with the
finite size of the proton. (See Problem 8.1.)

The above analysis is easily extended to give the polarization properties of
the electrons in Coulomb scattering.

At non-relativistic energies, the answer is of course well known from non-
relativistic quantum mechanics. The Coulomb interaction (8.92) and the scat-
tering amplitude are spin-independent, i.e. spin is conserved in Rutherford
scattering.  Interpreted in terms of helicity, this means that if the
incident electron has positive helicity, then the outgoing electron has positive
helicity for forward scattering, and negative helicity for backward scattering.
At intermediate angles, it follows from the rotational properties of spinors
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that, for scattering through an angle 6, the probability of positive helicity (i.e.
no helicity flip) is cos? (6/2), and of negative helicity (i.e. helicity flip) is
sin? (6/2). These results of course also follow from the matrix element in the
first line of Eq. (8.93a). For the non-relativistic limit, it is most natural to use
the Dirac—Pauli spinor representation [Egs. (A.72) and (A.73) in Appendix
A] for the spinors u(p) and uy(p’). The indices r and s then label the spin
components referred to a fixed axis in space. 1t follows that in the non-
relativistic limit the leading term of the matrix element in Eq. (8.93a) is
proportional to
lim (i,(p')7°u(p)) = ul(0)u,(0) = S,

p-0
p-0
i.e. spin is conserved.

At relativistic energies, the scattering is spin-dependent, due to the
interaction of the electron’s magnetic moment with the magnetic field which
the electron sees in its own rest-frame. [The velocity-dependent term
—v?sin? (6/2) in the Mott formula (8.93b) similarly results from this
magnetic scattering.] To obtain the polarization properties, it is now most
convenient to use the helicity states and the helicity projection operator
formalism of Section 8.2. We consider a transition in which the incident
electron has positive helicity [i.e. it is in the spin state u(p)]. The probability
that the scattered electron has positive or negative helicity is, from Eq.
(8.93a), proportional to

_ s =1, positive helicity
X, = |ap')y° 2, . .. 8.96
(071 () {s = 2, negative helicity. ( )
From Egs. (8.28) and (8.29) we see that this can be written
X, =Tr {A*(p')y°TI* (p)A* (p)y "TI*(p)}, (8.97)

where the plus and minus signs on I1*(p’) correspond to s = 1 (no helicity
flip) and s = 2 (helicity flip) respectively.

In the extreme relativistic limit E = E’ > m, the helicity projection
operators simplify to

IT*(p) = 2(1 £ 9%). (A.43)
Correspondingly, Eq. (8.97) reduces to

1
Xs = 1‘6_m2 Tr {(¢’ + m)'yo(l + yS)(ﬁ + m),yO(l + ,yS)}. (8-98)

Since p and p’ are of order E, we would expect the leading contributions to
X, to come from the part of the trace in Eq. (8.98) which contains both g and
/' as factors, so that X; would be of order (E/m)2. It is easy to show that for
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¥y

(a) (b)

IYig. 8.7. The two extreme regimes for Coulomb scattering. (The broad arrows
represent the electron spins.) (a) Non-relativistic energies, |p| « E: spin is conserved.
(b) Extreme relativistic energies, E > m: helicity is conserved.

X, i.e. no helicity flip, this is indeed the case, but that for X, i.e. helicity flip,
thc only non-vanishing term is the part of the trace in Eq. (8.98) which is
proportional to m? (i.e. independent of p and p’), so that X, is of order unity.}
Thus in the extreme relativistic limit E > m, the helicity flip amplitude
vanishes, and helicity is conserved. This contrasts with the non-relativistic
limit |p| « m, where spin is conserved and the probability of helicity flip is
sin? (6/2). These two regimes of non-relativistic and extreme relativistic
energies are schematically illustrated in Fig. 8.7. At intermediate energies, the
traces in Eq. (8.97) must be evaluated exactly.

8.8 BREMSSTRAHLUNG

The deflection of an electron by the Coulomb field of a heavy nucleus, which
we studied in the last section, implies that the electron must emit radia-
tion and consequently be slowed down in its motion. More generally,
the scattering of any charged particle leads to the emission of radiation. Both
this process and the radiation are referred to as bremsstrahlung (literally
translated, braking radiation). In this section we shall consider brems-
strahlung resulting from the scattering of electrons by the Coulomb field of
@ heavy nucleus. This process is of considerable practical importance. It is
primarily responsible for the slowing down of fast electrons in their passage
through matter, and it is widely used in electron accelerators to produce
photon beams.

} Using [¥%,9*]+ =0, (#°)* = 1, and
Try® = Tr (b°y%) = Tr (3°y**) = Tr (5*y'y*y") = 0, (A21)

one easily proves these points and calculates the traces in Eq. (8.98). (One finds that only the
lerm containing p and p’ makes a non-vanishing contribution to X,.) The detailed proofs are
left as exercises for the reader.
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Fig. 8.8. The momentum space Feynman diagrams for bremsstrahlung.

Unlike elastic Coulomb scattering, we are now considering a process in
which both the quantized field and the external field (ie. the nuclear
Coulomb field) play a role; the former to emit the radiation, the latter to en-
sure conservation of energy and momentum. In lowest order, the process is
brought about by the second-order term (n = 2) in the S-matrix expansion
(8.84) but, by this stage, the reader should have no difficulty in writing down
the corresponding S-matrix element directly in momentum space. The two
Feynman diagrams responsible for the transition are shown in Fig. 8.8, which
also specifies the momenta of the particles. (The spin and polarization labels
are again suppressed.) From the Feynman rules of Sections 7.3 and 8.7, the S-
matrix element is given by

m 1

m \1/2 12 172

where
M = — PAGHRISHP + WALQ) + A@iS(p — HAKu(p)
- —ie’a(p')[¢(k) PR a0 o ) @100

and A.(q = p’ + k — p) is the momentum space Coulomb potential, given in
Eq. (8.92b).

The derivation of the cross-section formula for bremsstrahlung from Eq.
(8.99) is very similar to that given in the last section for Coulomb
scattering, Multiplying the transition rate [ f|S]i Y|?>/T by the density of final
states

Vv d3p'V d3k/(2m)S

and dividing by the incident electron flux |p|/(VE) leads to
2 ’

o= I

2m)*2w [p|

|#)* &3k dQY, (8.101)
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where d€Y' is the clement of solid angle in the direction p’ of the scattered
electron.

Summing and averaging Eq. (8.101) over final and initial electron spins is a
straightforward but lengthy calculation which leads to the Bethe—Heitler
cross-section formula for bremsstrahlung in a Coulomb field.} We shall restrict
ourselves to the simpler but interesting situation in which the emitted photon
has very low-energy, the so-called ‘soft photon’ limit w =~ 0. In this limit
q = p — p and |p| = |pl, as for elastic scattering. In the Feynman amplitude
(8.100), we neglect the k terms in the numerators of the electron propagators
and, using the Dirac equation, easily obtain

M= —iH(p)A(Qu(p) B{ - g,j (@ ~ 0)
= —eﬂo[z Z - 1%} (@ ~ 0) (8.102)

where ¢ = ¢(k) and .#, is the Feynman amplitude, Eq. (8.88), for elastic
scattering without photon emission. Substituting Eq. (8.102) in Eq. (8.101)
and comparing with Eq. (8.91), we can write the cross-section for soft
bremsstrahlung in the form

’ 2 43
(dﬂa> = <£1> — [Q - ﬁ} Ik wr0 (8103
dQ' /g dQ' /o Qr)* | p'k pk| o
where (dg/dQ), is the cross-section for elastic scattering without photon
cmission, Eq. (8.91). In deriving Eqgs. (8.102) and (8.103), we have not used the
explicit form of A.,(q), so that these equations hold for soft bremsstrahlung in
an arbitrary static external field, not just for a Coulomb field.

Eqgs. (8.102) and (8.103) contain two interesting features. Firstly, they each
factorize into the corresponding quantity for elastic scattering without
photon emission, multiplied by a factor which relates to the soft photon.
Secondly, both the amplitude .# and the cross-section (8.103) are singular in
the infra-red limit @ — 0. This infra-red singularity arises because for k =0
wc have p? = p'2 =m? so that the intermediate-state electrons in the
Feynman diagrams in Figs. 8.8(a) and (b) possess the four-momenta of a real
¢lectron, and correspondingly the propagators in Eq. (8.100) diverge.’ Both
the factorization property and the infra-red singularity are characteristic
features of soft photon emission processes. We shall discuss them further in
the next section.

" The Tormula is derived in, for example, C. Ttzykson and J. B. Zuber, Quantum Field Theory,
McGraw-Hill, New York, 1980, Section 5-2-4, and in J. M. Jauch and F. Rohrlich, The Theory
of Photons and Electrons, 2nd edn, Springer, New York, 1976, Section 15-6.

¥ [n & concise but horrible jargon, this situation is often described by saying that, as k — 0, the
internal electron lines in the Feynman diagrams 8.8(a) and (b) go on the mass shell; or, even more
concisely and horribly, that they go on shell.
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It remains to sum over the polarization of the emitted photons, assuming
that this is not observed. We shall do this by the gauge-invariant method of
Section 8.3. Applying Eq. (8.36) to Eq. (8.103), we at once obtain the cross-
section for the emission of soft bremsstrahlung in electron scattering by a
static external field

do\ [(do\ (=) P p > d%k -
(W)B = (E—')o (2m)2 [-pN_k - p_k:l > (w=~0). (8.104)

89 THE INFRA-RED DIVERGENCE

The above results on soft photon emission in electron scattering have
important implications for experiments on elastic electron scattering. In such
an experiment a photon may be emitted which is too soft to be detected, and
it is the energy resolution AE of the apparatus which determines whether
such a photon emission event is recorded as elastic or inelastic scattering.
Consequently, the experimental cross-section is the sum of the elastic cross-
section and the cross-section for bremsstrahlung of energy less than AE, i.e. it

should be written
do do do
— ) =(== — 1. 1
(dﬂ')Exp (dﬂ')m * (dﬂ')n (8.105)

Here (do/dQY)g, is the elastic cross-section and (de/dQ)g is the soft
bremsstrahlung cross-section (8.104) integrated over the range of photon
energy 0 < w < AE:

de do
= _— B, .1

(dﬂ,)n (dﬂ,)oa (8.106)

where (do/dQY), is the elastic cross-section in lowest order of perturbation
theory and

-1 d3k [ p/ p :Iz
= — == 8.107)
(2n)* o<k<ar @ Pk pk (

We are assuming that AE is sufficiently small so that the soft photon result
(8.104) is valid for w < AE.

Unfortunately the integrand in Eq. (8.107) behaves like 1/w for small w, so
that the integral is logarithmically divergent at the lower limit of integration.
This divergence is known as the infra-red catastrophe. 1t is a consequence of
the zero mass of the photon, and one way of dealing with this problem, due to
Feynman, is to assign a fictitious small mass A(30) to the photon and at
the end of the calculation take the limit 4 — 0 to regain QED.

Introducing a non-zero photon mass leads to modifications of Eq. (8.107).
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The amplitude . #, Eq. (8.100), is modified since in the denominators of the
clectron propagators we must now put k2 = A2, instead of k2 = 0. It is easy to
show that Eq. (8.103) is replaced by

do do o 2p'e 2pe 243k
(2 ax, 10
aQ (dQ’)o 2n)? [2p’k T2 Tk s /12] » (8.108)

With non-zero mass, photons can be longitudinally as well as transversely
polarized. The photon polarization sum is now effected by means of the
formula for massive spin 1 bosons

3
Z Erabrp =
r=1

The term k,kg/A* gives no contribution to the unpolarized cross-section in
the limit when A— 0, Hence the unpolarized soft bremsstrahlung cross-
section, integrated over the photon energy range 1 < w < AE, is given by Eq.
(8.106) with B, Eq. (8.107), now replaced by

-1 (d% 2p 2p 2
= | — 110
B (2m)? J w; [2p’k R —2pk + A2 @110

kaky . (8.109)

where w, = (A2 + k?)'/2 and the integration is over wave vectors k such that
A< w; < AE. For A > 0, B(4) is finite and well-defined. For A — 0, B(4) goes
over into Eq. (8.107) and diverges again.

Returning to Egs. (8.105) and (8.106), we see that the bremsstrahlung
cross-section (8.106) is of order « relative to the lowest-order elastic cross-
section (do/dQY'),. Consequently it would be inconsistent to use the latter for
(do/dQY)g in Eq. (8.105). Instead, we must include corrections of order « to
the elastic cross-section, which arise from the next order in perturbation
theory. Fig. 8.9 shows a Feynman diagram responsible for such a correction
to the lowest-order graph, Fig. 8.6. We shall consider these corrections in
detail in Section 9.7. For the moment we shall write

do do
(W)E. (dQ’) [1 + aR(4)] (8.111)

with the correction term R(Z) also a function of the photon mass A
Combining Eqs. (8.105), (8.106) and (8.111), we obtain

do do
(E)E (dn') {1+a[B() +RMI+ OGN} (8.112)

where the term O(a?) is to remind the reader that there exist higher-order
corrections.

! For a derivation of 1his formula, see Section 11.3, Egs. (11.24)-(11.27).
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Fig. 8.9. A correction term to the elastic electron scattering by
an external field.

We have seen that B(1) —» o0 as A — 0. When calculating R(A) in Section
9.7, we shall find that R(4) is also singular at 4 =0, with R(}) > — 0 as
4 — 01n such a way that the singularities in B(1) and R(A) exactly cancel and
[B(A) + R(A)] is well-defined and finite. Hence we can easily take the limit
A—0 in Eq. (8.112), obtaining a finite correction of order « to the lowest-
order elastic cross-section (do/dQ'). Such corrections are called radiative
corrections.

The experimental cross-section (8.112) depends on the energy resolution
AE which occurs in Egs. (8.107) and (8.110), and so depends on the details of
the experimental set-up. Because of this, the radiative corrections are
sometimes calculated and subtracted from the experimental data to give
‘radiatively corrected cross-sections’. In this way the results of different
experiments can be compared with each other and with theoretical predic-
tions for (da/dQY'),.

We can now understand the origin of the infra-red catastrophe better. It
arises through treating soft bremsstrahlung and elastic scattering as separate
processes in perturbation theory. This separation is artificial as one always
observes elastic scattering together with some soft bremsstrahlung, and the
cross-section for this is finite.

We have so far considered the emission of one soft photon and the infra-
red divergence to which this gives rise. For high-resolution experiments, the
emission of many soft photons may become important, resulting in infra-red
divergences of higher order in . We must then also modify Eq. (8.111) to take
into account higher-order corrections to the elastic scattering. The statement
that the infra-red divergences cancel exactly to all orders of perturbation
theory, leaving a finite radiative correction of order «, is the famous Bloch—
Nordsieck theorem. In high-energy experiments, where radiative corrections
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can become as large as 50 per cent in some kinematic regions, these
multiphoton contributions must be incorporated. It can be shown? that the
most important radiative correction is given by the generalization of Eq.
(8.112) to all orders and obtained from it by exponentiation, i.e.

do do
do = (2% eadB+R 8.113
(dQ’)Exp (dQl)o © ( )

Correspondingly, the elastic cross-section, calculated to all orders of
perturbation theory, is given by

do _ do aR()
(dQ')E: = (dQ’)o e . (8.114)

Since R(1) - —oo0 as A — 0, it follows that the pure elastic cross-section,
without photon emission, vanishes: there is no truly elastic scattering; all
observed scattering is accompanied by emission of radiation. This corre-
sponds to the result of classical electrodynamics that an accelerated charge
must radiate.

Any process involving charged particles initially or finally can be
accompanied by the emission of soft photons, and infra-red divergences occur
in all these processes. Our conclusions, reached for the case of elastic electron
scattering by an external field, hold generally. In particular, the Bloch-
Nordsieck theorem applies, ie. for all processes in QED the infra-red
divergences cancel exactly to all orders of perturbation theory, leaving finite
radiative corrections of order a. In the next two chapters we shall go on to
calculate these corrections.

PROBLEMS

8.1 In our discussion of electron scattering by an infinitely heavy nucleus, Egs. (8.92)-
(8.95), we treated the nucleus as a point charge. More realistically, we could treat
the nucleus as a splerical charge distribution Zep(r), where

Jd3rp(r) =1,

Show that the elastic scattering cross-section is now given by

de do 2
FTo <35>MIF(¢I)I

where (do/d€Y)y is the Mott cross-section (8.93b), ZeF(q) is the Fourier
transform of the charge distribution and q = p' — p (p and p’ are the initial and
final momenta of the electron).

! See 1he comprehensive article on the infra-red problem by D. R. Yennie, S. C. Frautschi and
H. Suura, Ann. Phys. (N.Y.), 13 (1961), 379.
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F(q) is called the form factor of the charge distribution. Show that it is a
function of |q|? only, and that the root-mean-square radius r, of the charge
distribution is given by

s U@
" d(q%)

8.2 Consider elastic e” — pu~ scattering at energies sufficiently high so that the mass
of the electron can be neglected throughout. Show that the differential cross-
section for this process, in the frame of reference in which the muon is initially
at rest, is given by

2E L0 2 0
do _(do 1 +—sin® - 1 -2 tan? —]~
dqQy dQ’ /y m, 2 2m? 2] -
Here E and E’ are the initial and final energies of the electron, and @ is the angle

through which the electron is scattered. g is the four-momentum of the exchanged
photon, whence

lg|=0

q® = —4EE’sin? (0/2),

and (do/dQ)y is the Mott cross-section (8.93b) in the extreme relativistic limit
v — 1 (and, of course, Z = 1).

8.3 In the last problem the interaction of the muon is characterized by the vertex
factor iey* (Feynman rule 1). The method of the last problem can be applied to
electron—proton scattering by replacing the factor iey* of the muon vertex by the
factor

Kp

2m

—ie[)’aFl(qz) + Fz(qz)iaapqli]’

P
where ¢ is the momentum transfer four-vector of the electron, and «, is the
anomalous magnetic moment of the proton in units of the Bohr magneton. F,(q?)
and F3(q?) are form factors representing the internal structure of the proton, with
F(0) = F(0) = 1,so that for ¢ — 0, i.e. a stationary proton interacting with static
electric and magnetic fields, the proton has the correct electrostatic and
magnetostatic interactions.

Show that in the laboratory frame in which the proton is initially at rest the
differential cross-section for elastic scattering of electrons of energy E(>m,) is
given by the Rosenbluth cross-section

do do 2E ., 0!
—=[—] |1+ "=sin®>=
dqy dQY /y my, 2

K2 2 0
x {[F (g% — ﬁq’F %(q’)] - fqr;,—z— [Fi(q%) + x,F2(q?)]* tan? 5}-
p p

Here 6 is the angle of scattering, and (do/d€Y)y is the Mott cross-section (8.93b)
with Z=1and v = 1.
8.4 Show that the probability of helicity flip occurring in Mott scattering is given by

m? sin? (0/2) '
E? cos? (8/2) + m? sin? (6/2)
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Show that the Mott scattering formula (8.93b) also gives the differential cross-
section for the scattering of positrons by a heavy nucleus, treated as a point
charge. (This cquality of clectron and positron scattering holds for the lowest-
order calculations only.)

Show that the differential cross-section in the centre-of-mass system for electron—
electron scattering in the high-energy limit (E >» m) is given by

do _a? [1+cos* (8/2) 2 1 + sin* (6/2)
dQ Jeow  8EZ | sin®(0/2)  sinZ(0/2)cos? (0/2) T cos* (8)2)

where 0 is the scattering angle and E is the energy of either electron in the CoM
system.

Show that the Feynman amplitude for Compton scattering
M= M, + My (8.58-59)

is gauge-invariant, although the individual contributions .#, and .# are not, by
considering the gauge transformation [compare Eq. (8.31)]

e(k) — e(k) + Ak, gky-ek)+ k.






CHAPTER 9

Radiative corrections

In the last chapter we applied QED to calculate processes in lowest order
of perturbation theory. On taking higher orders into account, one expects
corrections of the order of the fine structure constant « to the lowest-order
results, known as radiative corrections. However, on doing such a calculation
one encounters divergent integrals. The divergent electron self-energy term,
liq. (7.44b), corresponding to the Feynman diagram, Fig. 7.15, is a typical
example.

In this chapter we shall show how to overcome these difficulties. This
involves three steps. Firstly, one regularizes the theory, that is, one modifies it
so that it remains finite and well-defined in all orders of perturbation theory.
The second step originates from the recognition that the non-interacting lep-
tons and photons from which perturbation theory starts are not the same
thing as the real physical particles which interact. The interaction modifies
the properties of the particles, ¢.g. the charge and mass of the electron, and the
predictions of the theory must be expressed in terms of the properties of the
physical particles, not of the non-interacting (or bare) particles. The second
step, called renormalization, consists of relating the properties of the physical
particles to those of the bare particles and expressing the predictions of the
theory in terms of the masses and charges of the physical particles. The third
step consists of reverting from the regularized theory back to QED. The
original infinitics of QED now appear in the relations between bare and
physical particles. These relations, like the bare particles themselves, are
totally unobservable. In contrast, the observable predictions of the theory,
cxpressed in terms of the measured charges and masses of the particles,
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remain finite as QED is restored. In particular, the radiative corrections are
finite and of order .

The programme we have outlined can be carried through to all orders of
perturbation theory, so that the radiative corrections can be calculated to
extraordinarily high accuracy. The complete agreement of these predictions
with equally precise experiments, for example for the anomalous magnetic
moments of leptons and for the Lamb shift, constitutes one of the great
triumphs of physics.

In this chapter we shall almost exclusively consider the calculations of
radiative corrections in lowest order of perturbation theory. We shall develop
the general methods for this in Sections 9.1-9.5, and we shall consider applica-
tions and comparison with experiment in Section 9.6. The more technical
details of regularization are relegated to the next chapter. As a further appli-
cation, in Section 9.7, we shall once more consider the infra-red divergence
completing the discussion which was started in Section 8.9. Finally, in
Section 9.8, we shall briefly indicate how the considerations of this chapter
can be generalized to yield finite radiative corrections to all orders of
perturbation theory.

9.1 THE SECOND-ORDER RADIATIVE CORRECTIONS OF QED

The radiative corrections to any process in QED are obtained, like the
lowest-order matrix elements themselves, from the S-matrix expansion, Eq.
(8.84), using the Feynman rules of Sections 7.3 and 8.7. The Feynman
diagrams representing the radiative corrections to a process contain
additional vertices, compared with the diagrams describing the process in
lowest order of perturbation theory, corresponding to the emission and
reabsorption of virtual photons. Restricting oneself to the Feynman diagrams
which contain two extra vertices corresponds to calculating the radiative
corrections in lowest order of perturbation theory, involving only one virtual
photon. Thus these corrections are of second order in the electronic charge,
i.e. first order in the fine structure constant, relative to the lowest-order
matrix element.

To introduce the basic ideas involved in calculating second-order radiative
corrections, we shall consider the elastic scattering of electrons by a static
external field A%(x). As we saw in Section 8.7, the lowest order of per-
turbation theory describes this process by the Feynman diagram of Fig. 9.1
and by the Feynman amplitude

MO = jequ(p)A(p' — pPIu(p). 9.1

Here and from now on the charge of the bare (i.e. non-interacting) electron is
denoted by (—ep). Similarly, we shall denote the mass of the bare electron
by m.

The radiative corrections to the amplitude (9.1) follow from the S-matrix
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p p

Fig. 9.1. The lowest-order contribution
to the elastic scattering of electrons by a
static external field.

expansion (8.84). We shall assume that the external field is weak, so that we
nced only retain terms linear in A#(x) in this expansion. It can then be

written
°° (ieg)" 4 4
S A 1 (n — 1)' J J X1 . Xn

x T{NW A ) N AY)s, ... NG AY)s,}- 92)

The leading amplitude #‘9 stems from the n = 1 term in Eq. (9.2). Then = 2
lerm in Eq. (9.2) is linear in the quantized radiation field 4*(x). Hence it
necessarily involves emission or absorption of a photon and describes
inclastic processes such as bremsstrahlung, discussed in Section 8.8. The
sccond-order radiative correction follows from the n = 3 term in Eq. (9.2).

The four contributions to this second-order correction are shown in Fig.
9.2, Each of these can be regarded as a modification of the lowest-order
diagram 9.1, corresponding to one of the substitutions shown in Fig. 9.3. For
cxample, the Feynman graph 9.2(a) is obtained by making the substitution of
Iig. 9.3(a) in the incoming electron line of diagram 9.1, and so on.

The loop diagrams 9.3(a) and (b) we have met before (see Figs. 7.8, 7.9 and
7.15). They represent the self-energy parts of an electron and of a photon due
1o the interaction of the electron—positron field with the photon field. The
clectron self-energy loop in diagram 9.3(a) represents the lowest-order
process which turns a bare electron into a real physical (i.e. interacting)
clectron. Similarly, the loop of diagram 9.3(b) represents the photon self-
energy in lowest, ie. second order only. The fermion—photon interac-
tion here manifests itself in the creation and annihilation of a virtual
clectron-positron pair, and the loop diagram 9.3(b) is referred to as a vacuum
polarization diagram, Lastly, the substitution shown in Fig. 9.3(c) represents
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(a) (b)

(c) (d)

Fig. 9.2. The four contributions to the second-order radiative corrections to electron
scattering.

the lowest-order modification of the basic vertex part, i.e. of the basic
fermion—photon interaction N(yAy), due to the emission and reabsorption
of a virtual photon during the process of interaction.

The Feynman amplitudes for the diagrams 9.2(a)-(d) follow from the
Feynman rules and are given by

MP = ieoid(p ) AP — P)SH p)iedZ(p)u(p) (9.32)
MP = ieoit(p))ieFE(pISE(P) AL — p)u(p) (9.3b)
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Fig. 9.3. The second-order corrections to fermion and photon lines and to

the basic vertex part: (a) the fermion self-energy part ie2S(p), Eq. (9.4);

(b) the photon self-energy part ie3I1*'(q), Eq. (9.5); (c) the vertex part
e(A*(p, p), Eq. (9.6).

MP = ieoid(p )y u(p)iDriu(q)ied 1" (@) Aer(p’ — P) (9.3¢)
MP = ieqi(p e AH(P', PIu(p)Ac D — P) (9.3d)
where
ie5(p) = 80 [ gokin. . (oise(p — ky? (9.4)
o=\ P (27':)4 Faf Y 13¥4 .
. 2rruv (ieo)2 4=y _ v _ |
iegl1**(q) = ) (=1) Tr | d*py*iSe(P + q)7"1S¥(P) (9.5)
and
2AB( _ (ieO)2 41, a: ’ ue B:
esA'(p', p) = an d*ky*iSe(p’ — K)y"iSe(p — k)Y iDrap(k).  (9.6)

We see that in order to calculate the second-order radiative correction to
electron scattering we must evaluate the three loop integrals (9.4)-(9.6).
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Unfortunately, on substituting the explicit expressions for the electron and
photon propagators, all three integrals are found to be divergent for large
values of the momentum variables of integration! Froam dimensional
arguments, one sees that for k —» oo the integrals (9.4) and (9.§) appear to be of
order k and in In k, respectively, while the integral (9.5) appears of order j?
as p — c0.! In the next four sections of this chapter, we shall consider these
three divergent integrals in detail. We shall show how the concepts of charge
and mass renormalization enable one to extract unambiguously finite
radiative corrections of order a, expressed in terms of the observed charge
(—e) and the observed mass m of the real physical electron, and not in terms
of the unobservable charge (—e;) and the unobservable mass m, of the bare
electron. The great importance of this analysis is due to the fact that in
calculating the radiative corrections of lowest order to any process these
same three divergent integrals occur and no others. Consequently, once we
have coped with these three integrals, the calculation of the second-order
radiative correction to any process presents no difficulties of principle.

We illustrate this for Compton scattering, previously studied in Section
7.2.2. In lowest order, Compton scattering is described by the Feynman
graphs of Fig. 9.4. The second-order radiative corrections arise from all
connected Feynman graphs containing four vertices and the correct external
lines.

The substitutions of Fig. 9.3 in the diagrams 9.4 lead to 14 contributions,
with insertions of the electron self-energy part (in internal or external electron
lines), of the photon self-energy part and of the vertex correction being
responsible for 6, 4 and 4 graphs, respectively. Four of these graphs are shown
in Fig. 9.5. The Feynman amplitudes for these 14 graphs will contain the
three divergent loop integrals (9.4)-(9.6) as factors, similar to the way
they occur in the electron scattering amplitudes (9.3). After renormalization,
the evaluation of these amplitudes presents no difficulties and leads to finite
radiative corrections of order a.

\\\ ”
> > /'J:

(a) (b)

Fig. 94. The two lowest-order Feynman graphs for Compton
scattering.

! In addition, the integrals (9.4) and (9.6) also lead to infra-red divergences at the lower limit
k — 0. These infra-red divergences will also be dealt with later in this chapter.

$Of course, these dimensional arguments only give the maximum possible degree of
divergence of each integral. If the coefficient of the leading divergence happens to vanish, the
actual divergence is Icss severe.
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Fig. 9.5. Four of the fourth-order contributions to Compton scattering,
obtained by inserting a self-energy or vertex modification in the Feynman
graph 9.4(a).

In addition to these 14 Feynman diagrams, there are 4 fourth-order
diagrams which are not obtained from the second-order diagrams 9.4 by
inserting a self-energy or vertex correction. There are shown in Figs.
9.6(a)—(d).

Writing down the Feynman amplitudes for the diagrams 9.6(a) and (b),
using the Feynman rules, one finds that these amplitudes are finite and well-
defined, yielding radiative corrections of order .

(a) (b)
i E (d’éz-_—}(,_) i
(c) (d) (e)

Fig. 9.6. The fourth-order contributions to Compton scat-
tering which cannot be obtained by inserting a self-energy or
vertex modification in the lowest-order Feynman graphs 9.4.
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Finally, we must consider the triangle graphs of Figs. 9.6(c) and (d). Their
contributions differ only in sign and cancel each other exactly. This is most
easily seen by replacing diagram 9.6(d) by the equivalent diagram 9.6(e).
Diagrams 9.6(c) and (e) differ only in the directions of the arrows of the
fermion propagators around the fermion loops, clockwise in graph 9.6(c) and
anticlockwise in graph 9.6(¢). We know from our earlier discussions that
reversing the sense of a fermion propagator is equivalent to interchanging the
virtual electron and positron states which the propagator represents. Hence
reversing the arrows on the three propagators in the triangle of diagram
9.6(c) is equivalent to replacing e, by (— ) at each of the three vertices of the
triangle. Consequently the Feynman amplitudes of diagrams 9.6(c) and (e)
differ only by a factor (—1). (This result of course also follows directly from
the explicit expressions for the Feynman amplitudes of the two triangle
graphs.) This result for the triangle diagrams is a particular case of Furry’s
theorem which states that the contributions of diagrams which contain a
closed fermion loop with an odd number of vertices cancel. Such diagrams
always occur in pairs differing only in the senses of the arrows on the fermion
loops, and, by the same argument as above, their contributions will cancel.

The situation which has here been outlined for Compton scattering is
characteristic of radiative corrections. The second-order radiative correction
to any process is obtained by modifying the lowest-order graphs in all
possible ways according to the substitutions of Fig. 9.3. After renormalization
of the divergent loop integrals (9.4)(9.6), these modified graphs give finite
second-order radiative corrections. In general, there will be additional
second-order radiative corrections from graphs which are not self-energy or
vertex modifications of the lowest-order graphs. These contributions are
finite and well-defined and so do not require renormalization,

9.2 THE PHOTON SELF-ENERGY

We shall first consider the effects of the photon self-energy insertion, Fig.
9.3(b), in the photon propagator. For example in Mgller scattering, the
lowest-order diagram 9.7(a) is accompanied by the Feynman diagram 9.7(b)
as one of the contributions to the second-order radiative correction. In the
Feynman amplitudes, going from diagram 9.7(a) to 9.7(b) corresponds to
the replacement

iDrag(k) = iDgy,(K)iedIT**(k)iDg,4(k), (9.7)
where ie2[1#"(k) is given by Eq. (9.5) which can be written

AL Tr [P + K + mo)y" (B + mo)]
i€ (k) = 7y J P+ i —m il —m 4] O

This integral is quadratically divergent for large p. In order to handle it, we
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(a) (b)

Fig. 9.7. Moller scattering: (b) represents the
second-order photon self-energy correction to the
lowest-order diagram (a).

must regularize it, that is, we must modify it so that it becomes a well-defined
finite integral. For example, this could be achieved by multiplying the
integrand in Eq. (9.8) by the convergence factor

_A2 2
f(p*, A = (m) : (9.9)
Here A is a cut-off parameter. For large but finite values of A, the integral
now behaves like { d*p/p® for large p, and is well-defined and convergent. For
A — o0, the factor f(p?, A?) tends to unity, and the original theory is restored.
One can think of such convergence factors either as a mathematical device,
introduced to overcome a very unsatisfactory feature of QED, or as a genuine
modification of QED at very high energies, i.e. at very small distances, which
should show up in experiments at sufficiently high energies. We shall return
to this point later.

The convergence factor (9.9) was introduced in order to illustrate the idea
of regularization in a simple way. However, this factor does not provide a
suitable regularization procedure for QED, as it does not ensure zero rest
mass for the real physical photon, nor the related gauge invariance of the
theory.* It is most natural and desirable to employ a regularization procedure

* A non-zero photon rest mass p would modify Maxwell’s equations and, in particular, the
characteristic long-range behaviour of electromagnetic phenomena. For example, the long-range
1/r Coulomb potential would turn into the Yukawa potential e ~#"/r with the short range 1/u.
Laboratory tests of the Coulomb law provide the upper limit u < 1 x 10~ !*eV. The smallest
upper limit has been obtained from studies of the variation of the magnetic field of Jupiter over
large distances which gives u € 6 x 107'® ¢V. [L. Davis et al., Phys. Rev. Lett. 35 (1975), 1402,
which contains earlier references.]



184 Radiative corrections  Chap. 9

which ensures zero photon rest mass and gauge invariance for all values of
the cut-off A and in each order of perturbation theory. Different regulariza-
tion formalisms which satisfy both these requirements exist. In the limit in
which the original theory is restored the detailed form of the regularization
procedure does not affect any physical results. In the next chapter, where we
shall study regularization in detail, we shall see how this can be achieved. In
the present chapter we shall assume the theory has been regularized in this
way, so that all expressions are well-defined, finite and gauge-invariant.
Regularization will be implied; for example, we shall write T1#*(k) for the regu-
larized form of the loop integral (9.8) rather than calling it TI**(k, A).

In order to interpret the effects of the radiative correction of Fig. 9.7(b), we
shall consider it together with the lowest-order diagram, Fig. 9.7(a), from
which it originates. Taking these diagrams together corresponds to the re-
placement shown in Fig. 9.8, i.e. the propagator modification

iDFaﬂ(k) g iDFaﬁ(k) + leau(k)le(z,H‘“’(k)lDFvﬁ(k) (910&)
or, more explicitly, .
_igaﬂ lgaﬂ —1 a.ﬂ leonu\:( ) ]g"ﬂ

K rie k2 +ie K24 (©.106)
We can simplify this expression. It follows from Lorentz invariance that
I1**(k) must be of the form

*(k) = —g* A(k?) + k*k*B(k?), (6.11)

since this is the most general second-rank tensor which can be formed using
only the four-vector k*. Furthermore, the photon propagator always occurs
coupled to conserved currents, leading to expressions, analogous to Eq.
(5.45), of the form

Jd“ks"{( — k)iDgqg(k)sh(k).

Ifin this expression we make the replacement (9.10a) and substitute Eq. (9.11)
for I1**(k), it follows from current conservation, Eq. (5.47), that terms
proportional to the photon momentum k give vanishing contributions.
Hence, we can omit the term k*k*B(k?) from Eq. (9.11) on substituting this

Fig. 9.8. The modified photon propagator.
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equation in Egs. (9.10), with the result

—igap —igap 2 4012 1
1 — e3A(k . 9.12
k2+is—)k2+is[ eoA( )k2+is:| ©-12)

The right-hand expression in Eq. (9.12) represents the photon propagator,
modified to include the second-order photon self-energy effects. We rewrite
Eq. (9.12) in the form

—igaﬂ N _igaﬂ

O(ed). .
k* +ie  k® +ie + e3A(k?) + O) ©-13)

The equivalence of Egs. (9.12) and (9.13) follows since after regularization all
quantities, and in particular A(k?), are finite. Hence in the spirit of
perturbation theory, we can, for sufficiently small ed, expand the right-hand
side of Eq. (9.13) in powers of ¢j, thereby regaining Eq. (9.12). ‘

The left-hand side of Eq. (9.13) represents the photon propagator in lowest
order of perturbation theory, i.e. the propagator of the bare, non-interacting
photon. This propagator possesses a pole at k? = 0, corresponding to the
bare photon having zero rest mass. [Quite generally, the propagator of a
particle of rest mass m possesses a pole for four-momenta p such that p? = m?.
Eqgs. (3.59) and (7.48) illustrate this for the meson and fermion propagators.]
The right-hand side of Eq. (9.13) represents the photon propagator including
second-order self-energy corrections, i.e. it is the propagator of a real physical
photon [albeit to O(e3) only]. If, as discussed previously, the real photon rest
mass also vanishes, then the real photon propagator must also have its pole
at k? = 0. From Eq. (9.13) this implies

A(0) = A(k* =0)=0. (.14)
Hence A(k?) can be written
A(k?) = k?A'(0) + k2T1 (k?) (9.15)
where
_ dA(KY)

A= AK?=0)=——=
O = A" =0 =303 |,

and TI(k?) vanishes linearly with k? at k? = 0. Substituting Eq. (9.15)

into (9.12) and multiplying by e, we obtain

igaﬂ

_igaﬂ 2 N _igaﬁ
k* + ie

k2 +1ie ° ki+ie

e3[1 — e3A'(0)] + edll (k%) (9.16)
In formulating the Feynman rules, we associated a charge e, with each vertex.
In writing Eq. (9.16), we have effectively incorporated into it the two factors
eo which occur at the vertices at the ends of a photon propagator.
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We must now interpret Eq. (9.16). The first term on the right-hand side is
just the left-hand term multiplied by the constant [1 — eZA’(0)]. It is as
though the magnitude of the two charges interacting through the photon
propagator [for example, in the Mpller scattering diagram 9.7(b)] is not eq
but e, given by

e? = e2[1 — e2A'(0)]. (9.17)
In this equation we have introduced the concept of charge renormalization.
Eq. (9.17) defines the renormalized electronic charge (—e), i.e. the charge of
the physical, interacting electron, in contrast to the charge (—eo) of the bare
non-interacting electron. We have considered the photon self-energy in
second order only. There are of course higher-order corrections and we shall
write Eq. (9.17) more completely as

e=Z1%q = eo[1 —1elA'(0) + O(ed)]. (9.18)

The constant Z, relating the bare charge ¢, to the charge e of the real
physical particle (to all orders in e,) is called a renormalization constant. The
right-hand side of Eq. (9.18) gives the explicit expression for this constant
correct to the second order in ¢q.

It is of course the charge (—e) of the real physical electron which is
observable, not the charge (—e,) which was introduced as the coupling
constant of the free fields. Hence, all observable quantities, such as cross-
sections, should be expressed in terms of the real charge e, not in terms of the
bare charge ¢o. From Eq. (9.18) we have

eo = e[1 + O(e?)]
so that Eq. (9.16) can be written

_igaﬂ 2 _igaﬂ 2 igaﬂ
— €p ™ —e” + -
kX +ie © k* +ie k* +ie

e*TI(k2) + O(e®). (9.19)

Eq. (9.19) is our final result. It gives the photon propagator (times ¢?),
expressed in terms of the real charge e and accurate to terms in e*. The first
term on the right-hand side is the original photon propagator but multiplied
by the square of the renormalized charge e, instead of the bare charge e,. The
second term, of order o (=e?/4n) relative to the first term, will lead to an
observable radiative correction of this order in any process involving the
photon propagator iDg(k) in the lowest order of perturbation theory.

We have discussed renormalization of the regularized theory for a general
value of the cut-off parameter A, i.e. before taking the appropriate limit [in
our unrealistic example, Eq. (9.9), A —» o] which restores QED.} We must

It should be stressed that even for well-behaved finite theories renormalization is necessary in
order to express theoretical predictions for cross-sections, etc., in terms of observable quantities

like the charge e of real particles, rather than in terms of unobservable quantities such as the bare
charge eo.
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now consider what happens as we take this limit. In the next chapter we
shall consider regularization in detail. Here we shall only state the results.
Before proceeding to the limit which restores the original theory, all quan-
tities are well-defined and finite. As the limit is taken, the regularized integral
[1.(k?) tends to a well-defined finite limit which is independent of the detailed
form of the regularization procedure. On the other hand, as the limit is taken,
divergences reappear in the relation between e and ¢, Eq. (9.18). (4’(0) and
the renormalization constant Z3; become infinite.) But this is a relation
between the observable charge e of a real physical particle and the bare
charge e, of a non-interacting particle, which is a theoretical construct and
completely unobservable. Thus Eq. (9.18) is itself not amenable to experi-
mental tests, and it is only in such untestable equations that divergences
appear. Looking back at our final result for the modified photon propagator,
Eq. (9.19), we see that in the QED limit it only involves the measured
elementary charge e and the well-defined and finite limit of the loop integral
[1.(k?). Thus, the modified propagator, and the Feynman amplitudes and the
physical predictions to which it gives rise, are well-defined and finite, even in
the QED limit of the regularized theory. An explicit expression for the loop
integral [T, (k?) will be derived in Section 10.4, and it will be employed later in
this chapter in considering the radiative corrections to electron scattering
by an external field.

9.3 THE ELECTRON SELF-ENERGY

We next consider the insertion of a fermion self-energy correction in a
fermion propagator, shown in Fig. 9.3(a) and given by Eq. (9.4). After
simplification by means of the contraction identities (A.14), this equation can
be written

. _i 4 1 2p — 2k —4my

ieoZ(p) = @2n)* Jd k k* +1ie (p— k)2 —m? + ie (9.20)
This loop integral is ultra-violet divergent (i.e. in the limit k — o0). Its
treatment is very similar to that of the photon self-energy in the last section,
so that we can be brief except where differences occur.

One of the differences is that the regularization and renormalization of Eq.
(9.20) leads to integrals which are not only ultra-violet divergent but also
infra-red divergent, ie. they also diverge in the limit of zero photon
momentum k. We have met infra-red divergences in our analysis of elastic
and inelastic electron scattering (Section 8.9) and shall discuss their sig-
nificance further in Section 9.7. Here we conveniently remove infra-red and
ultra-violet divergences from Eq. (9.20) by the replacement

1 1 1
K+ie kK—il+ie KR—A'+i

(9.21)
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where A is a small infra-red cut-off parameter which ultimately is set equal to
zero. In effect, this corresponds to temporarily assigning a small non-zero rest
mass A to the photon. A is again an ultra-violet cut-off parameter, and taking
the limit A — oo restores QED. In the following we shall assume that the
loop integral (9.20) has been regularized through the replacement (9.21).

Proceeding as in the last section, we shall consider the fermion self-energy
loop together with the propagator into which it is inserted, as shown in Fig.
9.9 and given by

i i . 3 i
- (p)—— .22
P —my + ig ¢—mo+is+¢—mo+iele° (p)pt—mo+is (0-22)

We rewrite this expression using the identity

1 1 1t 1 1 1 1

a-p - atalataPalat 62

which holds for any two operators 4 and B, not necessarily commuting. (The

identity is easily verified by post-multiplying it by A — B.) By means of this

identity, Eq. (9.22) can be written, correct to terms of order e32,
i i
. d .
P— mo + i ¢—mo+e(2,2(p)+1e

O(ed). (9.24)

The left-hand side of this equation is the propagator of the non-interacting
fermion. As expected, it has a pole at p = my, corresponding to the bare rest
mass m, of the non-interacting particle! The expression on the right-hand
side of Eq. (9.24) represents the propagator of the interacting physical
fermion. Hence, we require its pole to be at p = m, where

m=my + ém (9:25)

is the real fermion rest mass; due to the interaction of the fermion field and the
electromagnetic field, the rest mass m of the real fermion differs from the rest
mass mg of the non-interacting bare fermion. In our perturbation treatment,
dm is a power series in €3, and in the lowest order—to which we are
working—dm = O(e). m is called the renormalized mass and the replace-
ment of my, by m using Eq. (9.25) is known as mass renormalization. It is
similar to and as essential as charge renormalization: the experimentally
determined mass of the electron is m, not mg, and predictions from theory
must be expressed in terms of the observable properties of the real interacting
particles.

! This is merely a concise way of saying that
i _i(F +my)
F—mp+is p*—md+ie

has a pole at p? = m3.
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A

Fig. 9.9. The modified fermion propagator.

To identify the pole of the modified propagator (9.24) at p = m, we rewrite
its denominator. It follows from Lorentz invariance that Z(p) can depend on
the momentum vector p through pand p?( = pp) only. It will be convenient to
expand X(p) in powers of (p — m) in the form

Z(p) = A+ (p— mB + (§ — mZ(p), (9.26)

where A and B are constants (i.e. independent of p) and Z.(p) vanishes
linearly with (p — m) at p = m. In particular,

A=2(p) ly=m. 927)

Substituting Eqgs. (9.25) and (9.26) in the modified propagator on the right-
hand side of Eq. (9.24), we see that this propagator has a pole at p=m,
provided

om = —e2A. (9.28)
Eq. (9.24) then reduces to
i 1
F—mo+ic  (§—myl+eB) + e4(F — mEd(p) + i

or, retaining only terms to O(e2),

+ O(ed), (9.29)

i
P—mo+ic p—m+ie

[(1 — e3B) — e3Zc(p)] + O(ed).  (9.30)

An alternative way of carrying out the mass renormalization is to express
the Hamiltonian of QED in terms of the real electron mass m, instead of the
bare mass mg,

H = Ho + H (9.31a)
where
Ho = — A(x)A"(x) + HO,A(X)NE" A(x)) + W MW (x) — P(x)(P — my(x),
(9.31b)
Hy = — el (X)ACW (x) — Smf (X)(x). (9.31¢)

As implied by our notation, we shall treat 3, as the free-field Hamiltonian
density and J#, as the interaction Hamiltonian density. The non-interacting
fermion now has the physical mass m and satisfies the Dirac equation

(if — mpy(x) =0,
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etc., and the fermion propagator becomes, in lowest order,
i
p—m+ ie

The use of the real electron mass m for the non-interacting fermion is
compensated for through the mass counterterm —dmyny appearing as an
additional interaction term in Eq. (9.31c). Graphically this term is repre-
sented by Fig. 9.10 corresponding to a two-line vertex at which an electron
(or positron) is destroyed and recreated.

If we use this division, Egs. (9.31a)~(9.31c), of the Hamiltonian density in
the S-matrix expansion (6.23), the Feynman rules which we obtained in
Sections 7.3 and 8.7 must be modified in two respects.

Firstly, the bare mass my is replaced by the real fermion mass m through-
out; in particular, in the fermion propagator. [Eq. (7.48), as it stands, already
states the modified rule 3, but we must now interpret m as the real mass; in
Chapter 7 it denoted the bare mass.]

Secondly, using Eq. (9.31c) as the interaction, leads to extra contributions
to the S-matrix expansion, represented by Feynman graphs containing the
two-line vertex part, Fig. 9.10. We see from the S-matrix expansion, Eq.
(6.23), that with Eq. (9.31c) as interaction, each two-line vertex in a graph
leads to a factor iém in the Feynman amplitude, just as each basic vertex part
leads to a factor iey* (rule 1 of Section 7.3). For each two-line vertex, we
must therefore write a factor

ibm = —iegA = —iefZ(P)|y=p. —d—N—— (9.32)

We see that as a consequence of the replacement
mg —m (9.33a)

for the free fermion, each Feynman graph containing a fermion sclf-energy
loop must be considered together with an identical graph in which the self-
energy loop has been replaced by a two-line vertex, Fig. 9.10. (These two
graphs are of the same order in e,.) The net effect on the Feynman ampli-
tude of taking into account both graphs is the replacement

ie2Z(p) — ie3Z(p) + id6m = ied(p — m)B + ied(p — m)Z(p), (9.33b)

where we used Egs. (9.26) and (9.32). We see that, quite generally, the
mass counterterm cancels the constant term A arising from the loop term
1,2

iegZ(p).

& "V .

> aN >

Fig. 9.10. The two-line vertex graph
representing the mass counterterm
—dmjny.
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Returning to Eq. (9.24), we see that if in this equation we make the
replacements (9.33a) and (9.33b), we obtain

i i
F—m+ic  (§—myl + e2B) + e2(§ — mZ(p) + i

+ O(ed). (9.34)

This equation agrees with our earlier result (9.29), as it must, since the two
derivations differ only in the way the same total Hamiltonian is split into free-
field and interaction parts.

The modified fermion propagator has so far been expressed in terms of the
bare charge ¢,. We now define a renormalized charge e by the relation

e = Z,el = e}(1 — e2B) + O(ef). (9.35)

The general interpretation of this charge renormalization is the same as we
met in the last section but it has of course a different origin; it is due to the
fermion self-energy, not the photon self-energy. Multiplying Eq. (9.30) by
¢3, in order to incorporate the charges e, which are associated with the
two vertices at the ends of the propagator, and expressing e, in terms of e, we
can write Eq. (9.30) as

ie2 ie?

F etk pomall T CTPIHOE).  (936)

The right-hand side of Eq. (9.36) gives the renormalized fermion propa-
gator (times e?), correct to terms in e*. The first term, ie?(y — m + ig) "1, is
simply the zeroth approximation, i.e. the bare fermion expression (in lowest
order e = eg and m = mg). The term containing X, is a radiative correction
of order x to the zeroth approximation.

Finally, we must take the limit A — oo in order to regain QED. From Eq.
(9.20), the loop integral 2(p) appears to be linearly divergent in this limit. As
is shown explicitly in Section 10.2, it is actually only logarithmically diver-
gent, with A4 given by

A= —3—ern A (9.37)
. 8n m

One finds that the constants B and Z, are also logarithmically divergent in
the limit A — oo, while the correction term X (p) remains well-defined
and finite in this limit and independent of the details of the regularization
procedure. It is from this term that measurable radiative corrections, of order
a, to the lowest-order predictions are derived. In contrast, the divergent con-
stants A, Band Z, occur only in untestable relations connecting physical and
bare quantitics.
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94 EXTERNAL LINE RENORMALIZATION

In the last two sections we considered the second-order self-energy insertions
in photon and fermion propagators. When considering radiative corrections,
these insertions must of course also be made in external lines. Their only
effect now is a charge renormalization but they do not lead to any finite
radiative corrections. We shall derive these results for the case of an initially
present electron.

Proceeding as in the last section, we consider the incident electron line
together with its self-energy insertions, i.e. the replacement shown in Fig, 9.11.
The corresponding replacement in the Feynman amplitudes is, from Eqgs.
(9.32) and (9.33), given by

)~ uB) + e TR — m)B + e — mIB(p]u). (939
Since (p — myu(p) = 0 and (p — m)Z(p) vanishes quadratically with p — m
as p — m [see Eq. (9.26)], we can drop the last term in Eq. (9.38) and write it

€

Unfortunately the term proportional to B in this equation is indetermi-
nate, as it stands. This ambiguity is resolved by explicitly using the adiabatic
‘hypothesis, discussed in Section 6.2, to describe how the self-energy effects
convert the incident electron from a bare particle to a physical particle. In
effect, the interaction is switched off as t = + co by multiplying the charge
¢o by a suitable factor f(t), so that the interaction (9.31c¢) is replaced by

Hi= —eo [ ()AN(x) — dmL f ()P (x). (9:40)

The precise form of the function f(t) is not important. We require that
f({) -0 as t » + o0, and that f(t) does not differ significantly from unity
during a time interval T which is long compared to the duration of the
scattering process considered. In terms of the Fourier transform

0

) = r F(E) ¢i® dE = J F(E) €% dE, (9.41)

-~ 0 i )
where g = (E, 0), we require the normalization

£0) = r F(E)dE =1 (9.42)

— w0

_._._,_>_.+,_Qﬁ+_._*_>_.

Fig. 9.11. The second-order modification of an external initial
electron line.
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and that F(E) is atmost & o-function with a peak of width 1/T situated at
E =0. As F(E) - o(F), the original theory with f(1) = 1 is restored.

The modified interaction (9.40) behaves in many ways like an external field
interaction. But whereas the static external field A3(x), Eq. (8.85), conserves
energy but not three-momentum, the interaction (9.40) conserves three-
momentum but not energy. The effect of using the energy—non-conserving
interaction (9.40) is to replace the original fermion self-energy insertion, Fig.
9.12(a), by the modified insertion shown in Fig. 9.12(b), where the vectors
q=(E,0) and ¢’ = (E’,0) in the fermion propagators describe the non-
conservation of energy at the vertices. Correspondingly, Eq. (9.39) is replaced
by

e2B

P—d—4 —m+ic

u(p) — [1 - JdE dE'F(E)F(E") P—4q4-—- m):lu(p).

(9.43)

The evaluation of this integral becomes trivial if in the numerator we make
the replacement

F—d—m—>F—d—m—Hp—m=51p-2¢—m),

justified since (p — m)u(p) = 0. In the resulting integral we can make the
further replacement

P—24-m->Kp—¢—4 —m,
since apart from this factor the integral is symmetric in g and ¢’. With these
replacements and the normalization condition (9.42) for F(E), Eq. (9.43)

reduces to
u(p) > (1 — 3e3B)u(p). (9.44)

The last expression is independent of the adiabatic switch-off function F(E).
Hence it already expresses our result in the limit F(E) — 8(E) which restores
our original theory with f(¢) = 1.

Eq. (9.44) is a second-order result. We can rewrite it in the form

u(p) - Z3/*u(p) (9.452)
k k
p Pk p p p-q-k  p-q-¢'
(a) (b)

Fig. 9.12. The fermion self-energy loop: (a) for the QED

interaction (9.31¢c); (b) for the modified interaction (9.40);

q=(E0) and ¢ = (E’,0) represent the energy non-
conservation at the vertices.
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where the renormalization constant Z,, defined in Eq. (9.35), relates the bare
charge e, to the physical charge e. Although we have only derived Eq. (9.45a)
in second-order perturbation theory, it holds to all orders.

Similar arguments applied to self-energy insertions in other external
fermion lines lead to the analogous results

a(p) » Zy*a(p),  o(p) > ZY*u(p), ®(p)—> Zi*0(p).  (9.45b)

Similarly, the photon self-energy insertion of Fig. 9.3(b) in an external photon
line leads to -

(k) - Z12e%(k), (9.45¢)

where the charge renormalization constant Z; is defined by Eq. (9.18).

The modifications (9.45) of the wave functions of the external particles due
to self-energy effects, are referred to as external line renormalization or wave
function renormalization. When considering the modified photon and
fermion propagators in the last two sections, we interpreted the parameters
Z, and Z, as renormalization constants of the charges acting at the vertices
at the ends of the photon and fermion propagators respectively [see Egs.
(9.18) and (9.35)]:

1/2

eo>e=Z%, eg—oe=2Z%,. (9.46)

We can equally interpret the wavefunction renormalizations (9.45) as charge
renormalizations. For this purpose, we associate the factors Z3/? and Z}/2 in
Egs. (9.45) with the charges acting at the vertices to which the external lines
are attached. Eqgs. (9.46) are now valid generally for each internal or external
line attached to a vertex. For external lines, these charge renormalizations are
the only self-energy effects (apart from the electron mass renormalization,
my — m, allowed for automatically through the mass counterterm). This is in
contrast to self-energy modifications of photon and fermion propagators [see
Egs. (9.19) and (9.36)] which lead to additional finite radiative corrections.

9.5 THE VERTEX MODIFICATION

We finally consider the second-order vertex modification shown in Fig. 9.13.
This corresponds to the replacement

ieqy* = iC*(p', p) = ieo[y* + eSA*(P', P)], (9.47)
where A*(p, p) is from Eq. (9.6) given by

Mgy = = [4% 1 \ 1 048)
PP o i f—k—mtic P-K-m+ie’

(m now of course denotes the real fermion mass.) A*(p’, p) is both ultra-violet
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Fig. 9.13. The second-order vertex modification.

and infra-red divergent. We regularize it by the same replacement (9.21) of
the photon propagator which we used for the fermion self-energy loop.

When considering the fermion self-energy, we separated off the free-particle
part Z(p)l;=m, Eq. (9.27). The troublesome part of A*(p’, p), which diverges
logarithmically as the cut-off parameter A tends to infinity and which we
want to separate off, is again given by the free-particle value

#(P)AX(P, P)u(P). (9.49)

Here u(P) is a free-particle spinor and P a free-particle momentum vector, i.e.
P2 = m? From Lorentz invariance, expression (9.49) must be of the form

aii(P)y*u(P) + bP*a(P)u(P), (9.50)

where a and b are scalar constants. But from Gordon’s identity (see Problem
A2)

Pra(PYu(P) = mu(P)y*u(P), (9.51)
and combining the last three equations we can write
#(P)A*(P, P)u(P) = La(P)y*u(P), (9.52)

where L is a scalar constant. _
For general four-vectors p and p’, we define A%(p’, p) by

AP, p) = Ly* + A&(P', p)- (9.53)
We see from Eq. (9.52) that for a free-particle four-momentum P
a(P)AX(P, P)u(P) = 0. (9.54)

The motivation for writing A“(p’, p) in the form (9.53) is that in the limit
A - o0, in which QED is restored, L diverges but the second term A%(p’, p)
remains well-defined and finite. This can be seen from the expression (9.48) as
it stands. With the abbreviations

A=pP—-fk-m+i,, q=p-—P, q¢g=p-P,
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we can use the identity (9.23) to expand the fermion propagators in Eq. (9.48)
in powers of ¢ and 4"

1 iy 1 _ L !
F—Kk—m+ic' p—Kk—-m+ic d+A 4+A

= l_l¢'.1.+ I P l__1_¢~1_+ > (9.55)
“\a afa "\a " af%A ‘
Substituting this expansion in Eq. (9.48), we see that the leading term in
A*(p', p) arises from (1/A)y*(1/A) in Eq. (9.55) and is simply A#(P, P). This
term may (and indeed does) diverge logarithmically as k — oo, since A is
linear in k. All other terms necessarily converge as k — oo, since they contain
additional factors A in the denominator.
Substituting Eq. (9.53) in Eq. (9.47), we obtain

ieoy* = iT*(p', p) = ieo[y*(1 + €§L) + eZA%(p', p)]. (9.56)

The term proportional to y* on the right-hand side of this equation is the
original basic vertex part ieoy* but with a renormalized charge. We define a
charge renormalization constant Z, by

es;:aﬂ+%m+0@x (9.57)
1

where O(ej) indicates that there are also higher-order contributions to the
charge renormalization which results from all vertex modifications, whereas
we have only considered the lowest, second-order correction. Expressing
the right-hand side of Eq. (9.56) in terms of the renormalized charge ¢, we can
write this equation

iegy* - iT*(p', p) = ie[y* + e*A%(p', p)] + O(e?), (9.58)

where O(e®) again indicates higher-order corrections.

Eq. (9.58) is our final result for the second-order vertex modification. It
consists of the charge renormalization (9.57) and the correction term
A(p', p). In the regularized form, all quantities are well-defined and finite. In
the limit A — oo, in which QED is restored, L (and Z,) become infinite but
this only affects the unobservable relation (9.57). On the other hand, A%(p’, p)
tends to a well-defined finite limit which is independent of the regularization
procedure and which contributes to the lowest-order radiative correction of a
process.

We now combine the charge renormalization (9.57) resulting from the
vertex modification with the charge renormalizations (9.46) resulting from
photon and fermion self-energy effects. Since each vertex has one photon line
and two fermion lines attached, it follows from these equations that the net
effect is the replacement of the bare charge e, at each vertex (i.e. everywhere in
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the theory) by the renormalized charge
e =eoZY*Z,/Z,. (9.59)

This and all earlier results in this chapter have been derived in second-order
perturbation theory only, but they can be shown to hold in all orders.

The result (9.59) allows a remarkable simplification. This is due to the fact
that the fermion self-energy insertion X(p), Eq. (9.4), and the vertex insertion
A*(p', p), Eq. (9.6), are related by Ward’s identity which is given by

(%(L) = A*(p, p). (9.60)
Du
(See Problem 9.2.) Ward’s identity relates the fermion self-energy graph, Fig.
9.14(a), to the vertex modification obtained from it by insertion of a zero-
energy photon in the intermediate fermion propagator, as shown in Fig.
9.14(b). Eq. (9.60) is a second-order result. However, Ward’s identity can be
generalized and holds in all orders of perturbation theory, allowing one to
obtain higher-order vertex modifications by differentiation of higher-order
fermion self-energy insertions. This greatly simplifies the calculation of
higher-order radiative corrections.

Ward’s identity also implies a relation between the charge renormalization
constants Z, and Z,, which we shall now derive. With u(P) a free-particle
spinor, we obtain from Eq. (9.60)

0X(P)
oP,

Using Eq. (9.26), we obtain for the left-hand side of Eq. (9.61)
Ba(P)y*u(P),

#(P) u(P) = #(P)AX( P, P)u(P). (9.61)

since

uP)(P — m) = Z(P)u(P) = 0.
From Egs. (9.53) and (9.54), the right-hand side of Eq. (9.61) equals
Lu(P)y*u(P),

(a) (b)

Fig. 19.14. (a) The second-order self-energy loop. (b) The
vertex modification obtained by inserting a zero-energy
photon in the fermion propagator of (a).
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and hence
B=L. (9.62)

From Egs. (9.35) and (9.57), this relation can be expressed in terms of the
charge-renormalization constants Z, and Z, as

Although we have only derived Eq. (9.63) in second-order perturbation
theory, it is an exact relation holding in all orders of perturbation theory.
As a consequence of the equality (9.63), Eq. (9.59) reduces to

e =e¢oZ}3?. (9.64)

Thus the charge renormalization does not depend on fermion self-energy
effects or vertex modifications, but originates solely from photon self-energy
effects, i.e. from vacuum polarization. This has an interesting consequence
when considering not only electrons and positrons, but also other kinds of
leptons, e*, u*, .... It is easy to see that Egs. (9.63) and (9.64) continue to hold
for each type of lepton, with the same constant Z; in each case.!
Consequently the observed equality of the physical charges of particles
implies the equality of their bare charges.

We have now completed our analysis of the second-order modifications of
photon and fermion lines and of vertices, and we can summarize our results
as follows. If we ascribe the physical masses (m., m,, ...) to the leptons and
throughout replace the bare charge e, by the physical charge e = e, Z}/?,
then the only modifications due to second-order self-energy and vertex cor-
rections in QED are the propagator modifications

_igaﬁ N _ig“ﬁ
k?+ie  k?+ie

[1 — eI (k*)] + O(e*) 9.65a)

i i
—— -
p—m+ie p—m+ie

[1 —e*Z(p)] + O(e*) (9.65b)

and the vertex modification
iegy* — ie[y* + e2A%(p', p)] + O(e®). (9.65¢)

As stated earlier, in the limit A - oo in which QED is restored, the
regularized functions I, . and A# tend to well-defined finite limits so that
the modifications (9.65) lead to radiative corrections of order a. Instead of
interpreting regularization as a mathematical device for coping with the
divergences of the theory, we can keep the cut-off parameter A finite and

*In addition to the vacuum polarization loops formed from electron-positron pairs, the
photon self-energy will now contain contributions from loops formed from pu*~u~ pairs, etc.
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interpret the regularized theory as a genuine modification of QED. We must
then ask what limits are set on the value of A and the validity of QED by
experiment. The most restrictive limits are obtained from the lepton pair
processes e e~ — [ 717, As discussed in Section 8.4, these processes probe the
behaviour of the photon propagator at k? = (2E)?, where E is the electron
energy in the centre-of-mass system and is about 15 GeV in the highest-
energy experiments to date. If the modified propagator (9.21), with A kept
finite, is used, then agreement with the experimental data is only obtained if
A z 150 GeV, corresponding to distances of order A™' <2 x 1073 f. We
conclude that, at presently accessible energies, the observable predictions of
QED are insensitive to modifications of the theory at distances much shorter
than 10731,

In contrast to the regularized functions I1;, . andA¥, one finds that ém
diverges like In A as A — oo, and indeed all divergent quantities of QED
diverge logarithmically. In our perturbation treatment, the leading divergent
terms are of order a, so that appreciable differences between bare and
physical quantities occur only for values of A which are enormously large.
For example, we see from Eqgs. (9.28) and (9.37) that for a significant electron
mass correction dm to occur, i.e. dm = O(m), we require

A = O(m e?™3%) ~ 10'2! GeV.

On the other hand, for A « 102! GeV, one obtains dm <« m, so that it seems
reasonable to treat the mass correction dm in perturbation theory. Thus the
reader who is rightly worried about treating large or infinite quantities in
perturbation theory, even in unphysical relations, should think of A as finite
but much less than 102! GeV. Furthermore, the physical predictions of the
theory will not be measurably different from those obtained in the limit
A - o, provided A is much larger than 150 GeV.

9.6 APPLICATIONS

We have so far shown how to calculate well-defined finite radiative
corrections of order a. Applications of these results lead to some of the most
spectacular successes of modern physics. In particular, for the anomalous
magnetic moment of the electron and the muon and for the energy levels of
the hydrogen atom (the Lamb shift) comparison of theory with experiments
leads to extraordinarily precise agreement. In this section we shall give these
comparisons for both problems. For the magnetic moment we shall derive the
radiative correction of order « to the Dirac value. The Lamb shift calculation
is a bound-state problem and its proper treatment requires a fairly elaborate
extension of the theory we have developed. We shall limit ourselves to giving a
much simpler approximate non-relativistic derivation, due to Bethe, which
calculates correctly the dominant contribution to the Lamb shift.
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9.6.1 The anomalous magnetic moments

The magnetic moment of a particle shows up through the scattering of the
particle by a magnetic field. For this reason we shall once more study the
elastie seattering of an electron by a static external field. We considered this
process in lowest order in Section 8.7 and found that it is represented by the
Feynman graph in Fig. 9.15(a) and that its Feynman amplitude is given by
Eq. (8.88):

iei(p)A(q = p' — p)u(p). (9.66)

The radiative corrections of order « to this process stem from the Feynman
graphs in Figs. 9.15(b)-(g). After renormalization, only diagrams (b) and (¢)
give contributions, with the Feynman amplitude to order e* given, from Egs.
(9.65), by

iei(p )y u(p) Ae,(q) +iea(p )y u(p)[ — e’ I(g*)] Acu(q)
+ ied(p)[2 AP, p)Tu(p)A..(q). (9.67)

All other effects are absorbed into the mass and charge renormalizations. In
particular, as we saw in Section 9.4, there are no observable radiative
corrections associated with the external line diagrams (d)—(g). In connection
with the charge renormalization resulting from the vacuum polarization

(a) (b) (c)
(d) {e) (f)

(g)
Fig. 9.15. Electron scattering by an external field: (a) the lowest-order graph;
(b)—(g) the graphs of order e. After renormalization, only (b) and (c) contribute
finite radiative corrections. (For greater clarity, in future we often mark only one
arrow on each fermion line.)
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graph (b), one point should be noted. When considering the vacuum
polarization loop in Section 9.2, we associated a charge renormalization
¢y — ¢ = ¢,Z }/? with the charge acting at each end of the photon propagator.
In the present context, ie. for diagram (b), one of these factors Z3/? is
absorbed into renormalizing the charges which aet as source of the external
field A4.,(q).

To use Eq. (9.67) we need explicit expressions for I1(g%) and A%(p/, p). In
Section 10.4 we shall derive the result

T1(q?) = -%“Jl dzz(1 — 2) ln[ 1 Z(rh Z)] (9.68)
0

For ¢* « m?, the logarithm may be expanded to give

2

el (g% = —I—Z; (%) 4 - (g* <« m?). (9.69)

In the next chapter, Section 10.5, we shall also show how to evaluate
AL(p’, p). In particular, we shall see that the third term in Eq. (9.67) con-
tains the term

) g 70 0@ 9.10)

1t is this contribution to the Feynman amplitude (9.67) that we wish to
interpret. To do so, we use the Gordon identity (see Problem A.2) to tewrite
the lowest-order scattering amplitude (9.66) as

2 WD)+ P + 07 TuD) As(@): 67D

In the non-relativistic limit of slowly moving particles and a static magnetie
field, the second term in Eq. (9.71) is just the amplitude for the seattering of a
spin } particle with magnetic moment (— e/2m), i.e. with gyromagnetic ratio
g = 2. The amplitude (9.70) is of the same form as the spin term in (9.71),
i.e. it represents a correction to the value of the magnetic moment of the
clectron as given by the Dirac theory. This anomalous magnetic moment

e (4 + o
2m 2n
corresponds to a shift in the g-factor, usually quoted in the form

g—2 «
=2 _“-_" 0. . 72
a, 3 > 0.00116 (9.72)

This result, first derived by Schwinger in 1948, is in excellent agreement
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with the first measurements by Kusch and Foley (1947, 1948a) who obtained
the value

a. = 0.00119 + 0.00005.}

Subsequently, both theory and experiment have been greatly refined.
Theoretically, the higher-order contributions of order a2 and of order o> to a,
have been derived. The result of these very heavy calculations (the o3 term
involves 72 very complicated Feynman graphs) is

10%a, = 1159652.4 + 0.4.
The most recent experiments by Van Dyck et al. (1978) give
10%°a, = 1159652.41 + 0.20.

The last two numbers display a most remarkable agreement between theory
and experiment to an accuracy greater than one part in a million.

A similar discussion applies to the anomalous magnetic moment of the
muon. Since Eq. (9.72) is independent of the lepton mass, we obtain the
same value for the muon in lowest order
gu—2 o«

=— = 0.00116,

=TT T

where we have written g, to distinguish the muon g-factor from that of the
electron. In higher order, differences arise since vacuum polarization loops
may involve any kind of lepton pair. This is illustrated in Fig. 9.16, where
diagrams (a), (b) and (c), (d) show two e* contributions to 4, and a,
respectively. Since the masses of the intermediate leptons occur in the
denominators of the corresponding propagators and since m,/m, = 207, the
contribution of the muon pair diagram (b) is completely negligible compared
with that of the electron pair diagram (a). (Another way of putting this is to
say that because of the much smaller electron mass, compared to m,, it is
much easier to create a virtual electron—positron pair than a muon pair.) For
the muon, on the other hand, the electron pair diagram (d) makes a large
contribution to a,, in fact it is substantially bigger than that of the muon
diagram (c). Similar conclusions hold generally for the contributions of
vacuum polarization corrections.

High precision measurements of the muon magnetic moment have been
performed, a recent experimental value (Bailey et al., 1979) being

10%a, = 1165924 + 8.5.

* The theoretical and experimental data quoted in this section and their sources are given in
F. H. Combley, Rep. Prog. Phys., 42 (1979), 1889. This article reviews the recent most ingenious
measurements of (g — 2) factors for electrons and muons and summarizes the current state of the
theory.
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ete par wrp par
e > g e e > 2 e
(a) (b)
,u.+,u._ pair ete” par
B > g B B > g B

(c) (d)

Fig. 9.16. ¢* vacuum polarization contributions to the g-factors of:
(i) the electron: (a) and (b); (ii) the muon: (c) and (d).

The best current theoretical prediction is
10%a, = 1165851.7 + 2.3.

The last two numbers show a small discrepancy between theory and
experiment. This can be attributed to the effect of strong interactions, e.g.
vacuum polarization graphs involving n*n~ pairs. The detailed analysis
shows that these hadronic contributions are sufficiently large to close the gap
between the theoretical and the experimental data for the muon. On the other
hand, the hadronic effects are completely negligible for the electron and do
not upset the excellent agreement between theory and experiment.

9.6.2 The Lamb shift

As a second important application we shall look at the radiative corrections to
the energy levels of the hydrogen atom. Historically, the measurements by
Lamb and Retherford in 1947 gave the main impetus to the development of
modern QED. According to the Dirac theory, the 2s,,, and 2p,,, levels of
hydrogen are degenerate. Lamb and Retherford’s original experiment gave
about 1000 MHz for the level splitting E(2s,,,) — E(2p,,,). This shift of the
bound-state energy levels and the resulting splitting are known as the Lamb
shift.

In the last sub-section we considered electron scattering by an external
static potential, and we saw that the radiative corrections of order «
stem from the Feynman graphs in Figs. 9.15(b)~(g). We can think of the same
graphs as describing a bound-state level in hydrogen, if we interpret the
electron lines and propagators not in terms of free-particle states but in terms
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of hydrogenic states. For the electron scattering case we saw that the electron
self-energy graphs 9.15(d)—(g) produce no observable radiative corrections
[because X (p)u(p) = 0] but contribute to the mass and charge renormaliza-
tion only. For bound states, on the contrary, the electron self-energy graphs
produce observable radiative corrections, and for s-states these graphs make
the largest contribution to the level shift, with vacuum polarization and
vertex corrections providing only a few per cent of the shift. It is therefore
essential in calculating level shifts to take the bound-state aspect accurately
into account. To do so, requires a lengthy analysis. The best approach is to
use the bound interaction picture in which the nuclear Coulomb field in
which the electron moves is included in the unperturbed Hamiltonian and
only the remaining interaction constitutes the interaction Hamiltonian. Bethe
in 1947 gave an approximate non-relativistic derivation of the Lamb shift,
obtaining a surprisingly good result considering the nature of the calculation.
We shall restrict ourselves to the Bethe approach as it is much simpler and
clearly exhibits the main origin of the Lamb shift.}

Bethe attributes the shift of a bound-state energy level to the self-energy of
the electron in that bound state. However, a part of this self-energy effect has
already been allowed for in using the physical electron mass in the
calculation, and not the bare mass. Hence the true level shift is the difference
between the self-energies of the bound and the free electron.

In Bethe’s calculation, the hydrogen atom is treated non-relativistically,
and second-order perturbation theory is used to calculate the interaction
between the electron and the transverse photons. This is the formulation of
QED which we gave in Chapter 1. The interaction Hamiltonian is, from Eq.
(1.62),

Hy = —;‘;— A(x)+p (9.73)

The level shift of a hydrogenic state [nl> = ¢,(x) (where n and ! are the
principal and angular momentum quantum numbers) is then given by

A, (k) = 1| Hjnl>?
R R

(9.74)

 For a rigorous treatment, employing the bound interaction picture, the reader is referred to
J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, 2nd edn, Springer, New York,
1976, Sections 15-4 and S5-3. An alternative approach, which utilizes the Bethe derivation for the
non-relativistic part of the calculation, is discussed in, for example, J. D. Bjorken and S. D. Drell,
Relativistic Quantum Mechanics, McGraw-Hill, New York, 1964, Section 8.7, or C. Itzykson and
J. B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980, Section 7-3-2.

% The A? interaction term in Eq. (1.62) is independent of the electron momentum. Therefore it
produces the same electron self-energy effects for the bound electron and the free electron, and so
does not contribute to the level shift.
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where the intermediate state |4, n(k) = 1) consists of the hydrogen atom in
one of the complete set of states |A> = ¢,(x), together with one transverse
photon. (E; and E, are the energy eigenvalues of |1)> and |nl}.)

The matrix elements in Eq. (9.74) are given by Eq. (1.65). Using the dipole
approximation, we replace the exponential in the matrix element (1.65) by
unity.* Substituting for the matrix elements in Eq. (9.74), one obtains

e} 1 Kalek)-plnl>?
SE(nl) = — — 9.75
=33 2, it o
As in Section 1.3, we sum over photon polarizations (» = 1, 2) and, after
converting the momentum sum into an integral, integrate over photon
directions [see the corresponding analysis leading to Eq. (1.53)]. In this way,
we obtain

1 e[ [<Alplnl)|?
where
CAlplnl = Jd3x¢f(x)(—iv)¢nz(x)- (8.77)

The integral in Eq. (5.76) is linearly divergent as k — co.

The corresponding self-energy dE ;(p) for a free electron with momentum p
is given by the same expression (9.76) where the matrix element (9.77) is now
between plane-wave states and is diagonal, so that

1 e 2 ©
OE =——(—]}p? dk. 9.78
P == (m) J L (9.78)
This self-energy is proportional to the kinetic energy of the electron and can
be interpreted in terms of a correction to the electron mass. Since the electron
in the state |nl> has a momentum distribution, the corresponding self-energy
is given by

SE (nl) = —é (%)2<nl|p2|nl> Lw dk. (9.79)

This integral, like that in Eq. (9.76), is linearly divergent as k — co.

If one uses the physical mass of the electron in calculating the level shift of
the state |nl), then the self-energy JE  (nl) has already been taken into
account, and the observed level shift AE(nl) is given by

AE(nl) = 0E(nl) — 0E (nl). (9.80)

! This is justified since the virtual photons which contribute significantly to the sum (9.74) have
wavelengths which are large compared to the Bohr radius. See Eq. (9.88) below.
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Since
<nllp?nly =) [KAlplnl)|?, (9.81)
A
we obtain from Egs. (9.76), (9.79) and (9.80)
1 [e)? °° E,-E
A =—— 2 — " . .
E(nl) P (m> ;I(ilplnbl L dk E,—E,+k (9-82)

This integral is only logarithmically divergent as k — co. To make it
converge, we replace the infinite upper limit by a finite cut-off k = K ~ m, i.
we suppress contributions to the self-energy from virtual photons with energy
k = m. We may try to justify this cut-off as follows. In emitting a virtual
photon, the electron experiences a recoil. If the non-relativistic treatment of
the electron is meaningful, this recoil and hence the virtual photon energy k
must be small compared to the electron rest mass. In other words, only
transitions to non-relativistic hydrogenic states and virtual photons with
energy k « m may be important. Hence taking the upper limit of the integral
in Eq. (9.82) as k = K ~ m, and assuming that in the sum over 4 in this
equation

|E, — E,| « K

holds for the terms which matter, we obtain from Eq. (9.82)

1
AE(nl) = ( > . APl (E; — En) In —— (9.83)

K
l - nl
From this equation, the shift of any bound-state enegy level is obtained.
The fact that it depends only logarithmically on the cut-off K makes it
insensitive to the exact value chosen for K.
To evaluate the A-summation in Eq. (9.83), Bethe defines an average
excitation energy <E — E,) by the equation

Y I<ApIRIIA(E; — EJIn<E — E,y —In|E, — EJ} =0.  (9.84)

Eq. (9.83) then becomes
AEGl) = - (£) 1n—K Aplnly|2(E, — E 9.85
() == ( B LIHRDEE — B 989

The summation over 4 in this equation can be performed, giving

; [<AIpInIYI*(Ex — En) = 3e*$u(0)

2

e

i£1=0 (s

_ {—27“13"3, if | (s-states), (9.86)
0, if I #0,
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2

where a = 4n/me? is the Bohr radius.' Substitution of this result into Eq.

(9.85) gives
3

8 «
AE(nl) = 5; n—3 Ry 1 510, (9.87)

K
"E-Ey
where Ry = e2/(8na) = 13.6 eV is the Rydberg energy.

Eq. (9.87) is the final result of Bethe’s calculation. According to it, only s-
states experience a level shift due to electron self-energy effects. For the 2s
states of hydrogen, Bethe uses the value

CE — E3 = 178 Ry, (9.88)

obtained by computation® Thus the important intermediate states of the
hydrogen atom are indeed non-relativistic although they are highly excited
continuum states. Using the value (9.88) and K = m, Bethe obtains from
Eq. (9.87) the Lamb shift

E(2Sl/2) - E(2p1/2) = 1040 MHZ, (989)

in remarkable agreement with the experimental value of 1057.8 + 0.1 MHz,
obtained by Triebwasser, Dayhoff and Lamb in 1953 as the culmination of
their measurements.

A proper relativistic calculation of the second-order radiative corrections
leads to the value 1052.1 MHz for the 2s,,, — 2p;,, splitting.” Such a calcula-
tion of course contains no arbitrary cut-off parameter K, and in addition
to the electron self-energy it takes into account all e? radiative corrections,
i.e. also the contributions from vacuum polarization and vertex corrections.
States other than s-states now also experience level shifts although these
are much smaller, e.g. the 2p,,, level is shifted downwards by 12.9 MHz

We shall only consider the vacuum polarization contribution. We see from
Eqs. (9.67) and (9.69) that the effect of the vacuum polarization on the scat-
tering of non-relativistic electrons by a Coulomb potential (8.92) corre-
sponds to modifying the Coulomb potential through the replacement

2
Ze  Ze (1 + iﬂ) (9.90a)

Le Le
lq? lql? 15% m?

since for the static external field g = (0, q). The corresponding modification in
configuration space is, from Eq. (8.85),

Ze Ze Zea
- +
4n|x|  4n|x|  15mm?

8(x). (9.90b)

¢ A simple derivation of this result is given in J. J. Sakurai, Advanced Quantum Mechanics,
Addison-Wesley, Reading, Mass., 1967, pp. 70-71.

¥ A later more accurate calculation gives the value 16.640 Ry.

* This and the other results we quote, together with detailed references, are given in the books
by Jauch and Rohrlich and by itzykson and Zuber which we list in the footnote on p. 204,
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Since the bound states of the hydrogen atom are extremely non-relativistic,
we can use the right-hand side of Eq. (9.90b) with Z =1 as an effective
potential to calculate the level shifts of the hydrogen atom due to vacuum
polarization. In first-order perturbation theory, these shifts are given by

2 3

—e‘a 8o
AE,,,(VaC. pOl) = W [(p,,,(())lz = - 153 Ry 510. (991)

For the 2s level of hydrogen this gives —27 MHz, a result which was first
obtained by Uehling in 1935. We see from Eq. (9.91) that vacuum
polarization only shifts s levels, the shift being downwards. Qualitatively one
can understand this in terms of the polarization by the external Coulomb
field of the virtual electron—positron pairs, the electrons being attracted
towards the nucleus, the positrons repelled. Thus the virtual electrons screen
the nuclear charge. However, an s-state atomic electron will penetrate inside
this screening and see the full nuclear charge, i.e. it will experience a more
attractive potential, leading to stronger binding.

Because of the great importance of the Lamb shift as a test of QED (the
results we quoted differ by about 6 MHz between theory and experiment),
both calculations and measurements of the Lamb shift have been greatly
refined. Calculations have taken into account higher-order radiative correc-
tions and other small effects such as the finite size and finite mass of the
nucleus and the use of relativistic wavefunctions for the bound states of the
hydrogen atom. The current most complete calculations give 1057.916 +
0.010 MHz (Erickson, 1971) and 1057.864 + 0.014 MHz (Mohr, 1975).
These values are to be compared with the most recent experimental data of
1057.893 + 0.020 MHz (Lundeen and Pipkin, 1975) and 1057.862 +
0.020 MHz (Andrews and Newton, 1976). As in the case of the anomalous
magnetic moments of the electron and the muon, the precision of both
experiment and theory, and their agreement, can only be described as
stunning. Lamb shift measurements and calculations also exist for other
levels in hydrogen, for deuterium and for the He* ion, and in all these cases
theory and experiment are in good agreement.

9.7 THE INFRA-RED DIVERGENCE

In Sections 8.8 and 8.9 we studied the scattering of electrons by an external
field. Because of the finite energy resolution in any experiment, the observed
elastic scattering cross-section always includes some bremsstrahlung, i.e.
inelastic scattering with emission of a soft photon. We saw that the latter
contribution is infra-red divergent and asserted that this divergence is exactly
cancelled by an infra-red divergence in the radiative correction of order « to
the elastic scattering. We shall now demonstrate this exact cancellation.
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The Feynman amplitude, including the lowest-order radiative corrections,
for elastic electron scattering is given by Eq. (9.67). The O(a) correction in the
cross-section comes from the interference term of the lowest-order amplitude
[the first term in Eq. (9.67)] with the radiative correction terms [the second
and third terms in Eq. (9.67)]. Il. is infra-red finite, and the infra-red
divergence arises from the A% term which we shall now study.

We regularize Eq. (9.48) for A*(p', p) by means of the replacement in Eq.
(9.21), obtaining

e d*k
ezAu(p; p) = (27':)4 sz 2y 18f(k)

Y — Kk + myyP(p — Kk + m)y,
where
A — A2
o= . (9.93)

Since we are now interested in the infra-red divergence when k — 0,and not in
the ultra-violet divergence (k — o0), we shall omit the cut-off factor f(k). We
shall similarly drop terms linear in k and k? in the numerator and denomj-
nator in the expression in curly brackets in Eq. (9.92). Using p? = p'2 = m?
and the Dirac equation, we can simplify Eq. (9.92) to give

PAPINP, Pu(P)
302 d4k /
= G a(p’)v"u(p)Ukz_ R

n A% + e (Pk)(pk)

where, as throughout the following, the dots indicate terms which are finite in
the limit A —» 0 and which we therefore neglect. We evaluate the integral
(9.94) by means of the identity

R S
Foirn o mk =

1

—p_ L im0 0
=Pz o, [3(k® — wy) + 8(K® + w)]  (9.95)

where w; = (A* + k?)!/2, Performing the k°-integration in (9.94) and omTt-
ting the infra-red finite contribution from the principal value part of Eq.
(9.95), one obtains

e*a(p)AM(P, Pu(p) = e*a(p ) uPA(P, p) + - (9.962)
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where

—1 J &k (Pp)
22n)* J @i (p'k)(pk)
In Eq. (9.67) we require the renormalized part of Eq. (9.96) which is given
by Eq. (9.53), ie.
e u(p)AP', pu(p) = e*@p AP, p) — Ly*Tu(p). (9.97)
From Egs. (9.53), (9.54) and (9.96) we obtain
e*u(p)A*(p, p)u(p) = €’ Li(p)y"u(p) = e*a(p)y"u(P)A(p, P) + -
and a similar equation with p replaced by p’, whence
L=Ap,p)+ = AP, P)+ (9:98)
Combining Egs. (9.96)—(9.98) leads to
2 a(p)AL(P', p)u(p)
= e*u(p' )y u(p){ A(p', p) — 3A(P', P) — 3A(p, p)} + -

1 (d%k :
= i(p)y u(p) {W J [ﬁ B ﬁ] } *

Substituting this expression in Eq. (9.67), we obtain the Feynman amplitude
for elastic electron scattering

_ e [dk P,
Jl-y/lo{l 4(2703[ [pk pk]}+ (9.99)

where #, is the lowest-order elastic scattering amplitude

Mo = ieiu(p)A(p — P)u(p).
Hence the elastic scattering cross-section (8.91) becomes

do) _ (o «_[dk AR
(EQ_)E,_(EQ_>O{1+WJ [;,—k*;;]}+ (9.100)

where (do/dQQ), is the lowest-order elastic scattering cross-section.

The cross-section (9.100) is infra-red divergent in the limit as 1 —» 0 and
w; — [k|. On forming the experimentally observed cross-section (8.105), we
see that this divergence in the elastic scattering is exactly cancelled by the
indra-red divergence which occurs in the soft bremsstrahlung cross-section,
Egs. (8.106) and (8.110), in the limit A — 0. Hence the experimental quantity
remains finite as the limit A — 0 is taken, as asserted in Section 8.9. As stated
in that section, this conclusion holds in all orders of perturbation theory: the
infra-red divergences which occur in the higher-order radiative corrections

A(p, p) = (9.96b)
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exactly cancel those in the inelastic processes involving emission of several
soft photons.

9.8 HIGHER-ORDER RADIATIVE CORRECTIONS:
RENORMALIZABILITY

So far we have considered radiative corrections of order « only. The
renormalization procedure we have developed can be extended and leads to
finite radiative corrections in all orders of perturbation theory. The proof of
this renormalizability of QED is of fundamental importance but because of
its complexity we confine ourselves to a qualitative discussion only.}

When studying radiative corrections of order «, we saw that these arise in
two ways: from the e? modifications to propagators and basic vertex parts of
the lowest-order Feynman graphs, and from higher-order graphs which
cannot be obtained in this way. (This was illustrated for Compton scattering
in Figs. 9.5 and 9.6.) This situation persists for higher-order corrections, and
we shall first of all consider the higher-order modifications of propagators
and vertices, starting with the electron propagator.

The e? correction to the electron propagator results from the insertion of
the electron self-energy loop ie2X(p), Fig. 9.17, in the bare electron

-

Fig. 9.17. The second-order
electron self-energy insertion

ie2X(p).

propagator, giving Figs. 99 and Egs. (9.22). In higher orders, iterations of
two, three or more such electron self-energy loops will occur. Their combined
contributions produce the modification shown in Fig, 9.18 and given by

i - i + ie2Z(p)
F—motie J-motic f_motic o P g o tie
i i i
——je{Z(p) ————————iedZ(p) ——————— + -+ (9.101
+¢——mo+isle° (p)pt—mo+isle° (p)pﬁ—mo+is+ ( a)

i
T p—mo+ eAX(p) + ie

(9.101b)

where we used the identity (9.23) to obtain the last expression.

* For complete treatments, 1he reader is referred to the books listed in the footnote on p. 204
and 10 J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, McGraw-Hill, New York, 1965,
Chapler {9,
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A WA WA

b N TN TN

Fig. 9.18. The electron propagator obtained by including the electron
self-energy insertion of order e? and its iterations.

There are of course many other electron self-energy insertions. To include
them all, we define a proper Feynman graph as a graph which cannot be split
into two graphs by cutting a single internal line. Figs. 9.19(a) and (b) show
some proper and improper electron self-energy graphs. We now re-define
ie2Z(p) as the sum of all proper electron self-energy insertions, as indicated in
Fig. 9.20. With this interpretation of ie3X(p), the infinite series of terms on
the right-hand side of Eq. (9.101a) contains all electron self-energy graphs, so
that the expression (9.101b) represents the complete (i.e. exact) electron
propagator.

The expression (9.101b) for the complete electron propagator is of the same
form as our earlier second-order result, Eq. (9.24), if in the latter equation we
reinterpret ie2X(p) and omit the term O(ed). Hence, the discussion of mass

N ‘
LN e :
LN

(a)

N SN T
(b} V ‘\\“’"’/

Fig. 9.19. Some electron self-energy graphs: (a) proper graphs; (b) improper graphs.

AN [W\\\\W/ , .
Fig. 9.20. The graphical representation of ie2X(p), redefined as the sum of
all proper electron self-energy insertions.
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renormalization, leading from Eq. (9.24) to Eq. (9.29), goes through exactly as
before, giving

ied ie?
— —-
p—mo+ic (B—m)(l+eiB)+ ej(p — mZ.(p) + ie

In Eq. (9.102) the bare and renormalized masses are again related by Egs.
(9.25), (9.27) and (9.28), which now hold to all orders, and B is again defined
by Eq. (9.26). 1e{Z(p) in Egs. (9.26) and (9.27) is the complete proper
clectron self-energy insertion, Fig. 9.20. Defining the renormalized charge e by

e? = Z,el =el/(1 + €2B), (9.103)
we obtain from Eq. (9.102)

(9.102)

ie3 ie?

F—mo+ic  (§—m)+e(p—mIdp) + i
which holds to all orders in e2. In lowest order, Eqgs. (9.103) and (9.104a)
rcduce to our previous results, Egs. (9.35) and (9.36), where Z(p) is now
calculated from just the first graph of Fig. 9.20.

Alternatively, and equivalently, one can introduce mass counterterms as in
Egs. (9.31). The analysis goes through exactly as before, with the counter term
(9.32) now defined in terms of the complete proper electron self-energy
insertion. In this way one obtains, instead of Eq. (9.104a),

(9.104a)

ie2 ie?

P—mtie  (J—m)+ (P — mEop) +ie

(9.104b)

in agreement with our earlier second-order results (9.34) and (9.35). We shall
adopt this approach in what follows.

One can similarly deal with the photon propagator. We redefine ie3IT#"(k)
as the sum of all proper photon self-energy insertions, as indicated in Fig.
9.21. Iteration of this complete proper photon self-energy insertion leads,
analogously to Eq. (9.101a), to the propagator modification

_igaﬂ = _iga[i _i au uv igv[i
i i rie TR e R
o e S () g”" ie3[17(k) 5+ (9.105a)
k? + ie i

@@@@ .....

Fig. 9.21. The graphical representation of ie2IT**(k), redefined as the
sum of all proper photon self-energy insertions.
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which incorporates all photon self-energy terms, proper and improper. If we
substitute Eq. (9.11) for I1**(k) and omit terms proportional to k*k”, since the
propagator is always coupled to conserved currents, we can sum the series in
Eq. (5.105a) and obtain

_iga[i N _igaﬂ .

k* +1ie k% +ie + el A(k?)
This is just Eq. (9.13) which, with the redefinition of ieZIT**(k), is now exact
to all orders in e rather than to O(e$) only. We again demand A(0) = 0,
Eq. (9.14). If we multiply Eq. (9.105b) by e2 and express eZ in terms of the
renormalized charge

e=eoZl? = e[l + €2 A'(0)] 172 (9.106)

we finally obtain for the complete photon propagator

(9.105b)

_igaﬂ ez N _igaﬂ ez
k2 +ie O k2 +ie+ €M k?)

A'(0) and TII(k?) are again defined in Eq. (9.15). In lowest order of
perturbation theory, Egs. (9.106) and (9.107) reduce to our previous results,
Egs. (9.18) and (9.19).

In Section 9.4 we considered external line renormalization in lowest order
of perturbation theory. We found that for external lines the only self-energy
effects are mass and charge renormalizations. This result can be shown to
hold in all orders of perturbation theory.

Finally, we must consider the vertex function iI**(p’, p). The second-order
treatment of Section 9.5 is easily generalized by including all proper vertex
modifications and redefining ie3A*(p’, p) as the sum of all such modifica-
tions, as indicated in Fig. 9.22. With this interpretation of ie3 A*(p’, p), the
basic results, Egs. (9.57) and (9.58), remain unchanged, except that the
qualifying terms [O(e3) and O(e®)] are absent. Since the Ward identity (9.60)
can be shown to hold to all orders, it follows that the relations Z, = Z, and
e =eoZ1%, Eqgs. (9.63) and (9.64), are also exact.

We have now generalized the relations between bare and physical masses
and charges to all orders. Correspondingly, the modifications of the bare

(9.107)

Fig. 9.22. The graphical representation of ie3A*(p’, p), redefined as the
sum of all proper vertex modifications.
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propagators and the basic vertex part are given, to all orders, by

i i

. . 9.108
té—'n+16—)(¢~m)+ez(¢—m)2c(p)+16 ( 2
——igaﬁ —igaﬂ
.108b
K tie K+ o + ek (5.108b)
iey* — ie[y* + 2A4(p, p)]. (9.108¢)

Although the right-hand sides of these equations no longer depend explicitly
on the bare charge eq, they do depend implicitly on e, since Z, I1. and A% are
expressed in terms of e¢o. Dyson, Salam, Ward and others have shown that
these quantities can be expressed in a consistent manner, order by order, in
terms of the physicat charge e. The right-hand sides of Egs. (9.108) therefore
represent the renormalized propagators and the renormalized . vertex
function.

Not all radiative corrections are due to self-energy and vertex modifi-
cations. To clarify the distinction, we define the process of reduction of a graph
as removing self-energy and vertex modifications from it, i.e. as replacing
them by bare propagators and basic vertex parts. Fig. 9.23 iltustrates
the process of reduction schematically. A graph from which all self-energy
and vertex modifications have been removed, so that it cannot be reduced
further, is called irreducible or alternatively a skeleton graph. For example,
for Compton scattering the graphs in Figs. 9.4 and 9.6 are irreducible,

(a) —— 7P P — _—

Fig, 9.23. Reduction of (a) an electron propagator; (b) a photon
propagator, (¢) a vertex part.
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whereas the graphs in Fig. 9.5 are reducible to the same skeleton graph, Fig.
9.4(a).

To calculate the Feynman amplitude for an arbitrary process to order n, we
combine the above results and proceed as follows. Firstly, we draw all skeleton
diagrams which contribute to the process (i.e. have the correct external lines)
and have not more than n vertices. From these skeleton graphs, all graphs
contributing to the process up to nth order are obtained by replacing the bare
propagators and the basic vertex parts by the renormalized propagators and
vertex functions, Egs. (9.108), expanding these equations up to the appropri-
ate powers in 2. Thus, to calculate the amplitude for Compton scattering to
fourth order we require the second- and fourth-order skeleton graphs. These
are shown in Figs. 9.4 and 9.6. (The triangle graphs 9.6(c) and (d) give zero
contribution, as shown in Section 9.1, and should be omitted.) Substitution of
Egs. (9.108), expanded to O(e?), in the second-order skeleton graphs 9.4
generates the second-order amplitude as well as the contributions of all
reducible fourth-order graphs; for example, those shown in Fig. 9.5 The
skeleton graphs in Fig. 9.6 are already of fourth order. Hence, no additional
fourth-order graphs are generated by the replacements (9.108), and in the
amplitudes for these skeleton graphs we merely replace the bare charge e, by
the physical charge e.

We have now outlined a general method of calculating higher-order radia-
tive corrections, expressed in terms of the mass and charge of the physical
electron. In order to deal with well-defined finite quantities we had to
regularize the theory through the introduction of suitable cut-off parameters.
We must now consider whether the radiative corrections remain finite in the
limit as we remove the cut-off parameters in order to restore QED.

In order to study the divergences of QED, it suffices to consider the
primitive divergences of the theory, since all other divergences can be built up
from these. A primitively divergent graph is a divergent graph which is
converted to a convergent graph if any internal line is cut (i.e. replaced by two
external lines). Clearly, a primitively divergent graph must be a proper graph,
and it cannot contain any divergent subgraphs.! Obvious examples of
primitively divergent graphs are the second-order self-energy and vertex
corrections of Fig. 9.3.

We want to identify all primitively divergent graphs. It follows from the
definition of a primitively divergent graph that one obtains a convergent
result if in the expression for the Feynman amplitude of the graph one keeps
any one internal four-momentum fixed (this corresponds to cutting an inter-

1 The two graphs on the left-hand side of Fig. 9.5 contain modifications to external lines only.
As we saw in Section 9.4, they do not contribute to the radiative corrections and so need not be
considered explicitly.

¥ Any graph isolated from another graph G by cutting a finite number of internal lines is called
a subgraph of G.
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nal line) and integrates over all others. Hence the degree of divergence of this
Feynman amplitude can be obtained by naive dimensional arguments, i.e.
by counting powers of momentum variables of integration in the numerators
and denominators.

Let the primitively divergent graph G have n vertices, fi(b;) internal fermion
(photon) lines and f.(b.) external fermion (photon) lines. If d is the number of
internal momenta not fixed by energy-momentum conservation at the
vertices, then the dimensionality of the Feynman amplitude of G is

K =4d —f — 2b,. (9.109)

There are n d-functions associated with the vertices of G. One of these -
functions ensures overall conservation of energy and momentum and only
involves external momenta. Hence of the (f + b;) internal momenta, only

d=fi+bi—(n-1 (9.110)
are independent variables. We also have the relations
2n = f, + 2f, n=b, + 2b;. 9.111)
Combining Egs. (9.109)-(9.111), we obtain
K=4—3fi—b.>0 (9.112)

as necessary condition for G to be a primitively divergent graph.
K =0,1,... means at most a logarithmic, linear, ... divergence.

Eq. (9.112) is a most remarkable result because it depends only on the
number of external fermion and photon lines of the graph and is independent
of its internal structure. Furthermore it provides the vital information that
the only graphs which may possibly be primitively divergent are those with
(fe. be) = (0, 2), (0, 3), (0,4), 2. 0) and (2, 1), and that the divergences are at
most quadratic. Two of these five types of graphs are in fact convergent. We
met the simplest example of the type (f, be) = (0, 3) in Section 9.1, Fig. 9.6,
where we saw that the triangle graphs occur in pairs which exactly cancel.
Since this result generalizes to all higher-order graphs of this type, one can
omit such graphs altogether. Secondly, graphs with (f, b.) = (0,4) do not
lcad to divergences. These graphs describe the scattering of light by light. The
simplest Feynman graph for this process is shown in Fig. 9.24. From Eq.
(9.112) such graphs could be logarithmically divergent. One can show that as
a consequence of gauge invariance they are strongly convergent.

The remaining three types of graphs can be primitively divergent. They are
Just the electron and photon self-energy graphs and the vertex modifications.
The only primitively divergent self-energy graphs are the second-order
corrections, Figs. 9.3(a) and (b). The second-order vertex modification, Fig.
9.3(¢), is also primitively divergent, but there exist infinitely many primitively
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Fig. 9.24. The simplest light-light scattering
diagram.

divergent higher-order vertex modifications; for example, the third graph on
the right-hand side of Fig. 9.22 is primitively divergent.

This exhausts the enumeration of primitively divergent graphs. In
particular, the irreducible diagrams of any physical process (f. + b, = 4) are
finite, and infinities can only arise through insertions of self-energy and vertex
modifications in these graphs. Hence if the residual modifications X, I, and
A%, which result from renormalization and which occur in Eqgs. (9.108),
remain finite to all orders, then inserting them into the irreducible graphs
cannot lead to divergences. The same approach which we used to analyse the
primitively divergent second-order corrections (essentially a Taylor series
expansion of the convergent integrands in the integrals representing the
Feynman amplitudes) can be used to show that all primitively divergent
contributions to Z., I, and A¥ remain finite as the cut-off parameters are
removed. This result can be extended to all proper sclf-energy and vertex
modifications. Consequently, the predictions of QED, expressed in terms of
the physical mass and charge of the electron, remain finite as all cut-off
parameters are removed.

A field theory is called renormalizable if its predictions in terms of a finite
number of parameters (i.e. masses and coupling constants) remain finite when
all cut-offs are removed. QED is an example of a renormalizable theory. In
such a theory, where the results are well-defined and finite in the limit as the
momentum cut-off A tends to infinity, the results are insensitive to the form of
the cut-off, provided only that A is much greater than the momentum scale of
the process under consideration. In other words, for QED the discussion
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following Egs. (9.65) goes through essentially unchanged to all orders, and
theoretical predictions obtained with a finite A are not measurably different
from those obtained in the limit A — co, provided A is very much greater
than about 150 GeV. In contrast, a theory which is not renormalizable can
still be made well-defined and finite by the introduction of suitable cut-off
parameters A. However, in such a non-renormalizable theory the physical
predictions diverge in the limit A — oo and hence are inevitably sensitive to
the form and magnitude of the cut-offs, even for very large A.

PROBLEMS

9.1 In Section 9.1 we used general arguments to show that the Feynman amplitudes
of the two triangle graphs, Figs. 9.6(c) and (d), differ only in sign and exactly
cancel each other. Derive this result from the explicit forms of these amplitudes.
[Note: This proof does not require the evaluation of the traces to which these
diagrams give rise, but only the use of the general properties of traces (see Section
A.3 in Appendix A) to relate the two expressions to each other.]

9.2 From [Sg(p)] ™! = p — m and [Se(p)1[Sx(p)] ! = 1, derive

OSe(p)/Opy = —Sk(p)y*Sk(p).
Hence, derive the Ward identity

0Z(p)

7, = M p)- (9-60)
p

n






CHAPTER 10

Regularization?

In the last chapter we saw that the calculations of radiative corrections
in QED lead to divergent loop integrals. These divergences are removed by
regularization, i.e. suitable modification of these integrals. After renormaliza-
tion, those integrals which enter physical predictions remain finite when the
regularization is removed, i.e. when the original theory is restored. There exist
several regularization formalisms, and the regularized integrals depend on
the formalism employed. However, in the limit in which the original theory is
restored, the physical predictions become independent of the method of
regularization used. At any rate, whenever different methods have been used,
they have led to the same results. In this chapter we shall consider the explicit
cvaluation of single loop integrals using two regularization procedures.

Historically the oldest procedure is the cut-off method which we discussed
and used for illustration in Chapter 9. It has the advantage of relating the
divergences to the short-distance and high-energy behaviour of the theory
To illustrate this method, we shall in Section 10.2 use it to calculate the elec-
tron mass shift ém. The cut-off method is difficult to apply in all but the
simplest cases. In particular, using this method makes it difficult to ensure
gauge invariance and the validity of the Ward identity to all orders of
perturbation theory. In order to do so, one must adopt a clumsy and com-
plicated cut-off procedure, such as the Pauli-Villars method.}

* This chapter deals with the technical details of regularization procedures. They will not be
required elsewhere in this book, and readers not interested in them may omit this chapter.

¥ The Pauli-Villars formalism is discussed in, for example, J. M. Jauch and F. Rohrlich, The
Theory of Photons and Electrons, 2nd edn, Springer, New York, 1976, Section 10-9, and in C.

itzykson and J. B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980, Sections 7-1-1
and 8-4-2.
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More recently, an alternative method, known as dimensional regulariza-
tion, has been developed. It is simpler to apply than the cut-off method, and
it has the great advantage that it automatically ensures gauge invariance, and
relatedly the validity of the Ward identity, to all orders of perturbation
theory. Dimensional regularization is therefore of particular importance for
QED and, even more so, for non-Abelian gauge theories, such as quantum
chromodynamics and the Weinberg-Salam unified theory of weak and
electromagnetic interactions. For non-Abelian gauge theories, gauge inva-
riance implies several Ward identities. Thesg are so restrictive that it is very
difficult to satisfy them when employing a cut-off regularization procedure. In
contrast, dimensional regularization automatically respects these identities
and gauge invariance to all orders of perturbation theory, and for non-
Abelian gauge theories this formalism has been almost exclusively used. In
particular, the crucial proof that the Weinberg-Salam theory is renormaliz-
able has only been carried out using dimensional regularization.

The formalism of dimensional regularization will be developed in Section
10.3. In the two succeeding sections it will be used to evaluate the vacuum
polarization correction and the anomalous magnetic moment of the electron.
Our development will again be restricted to the lowest order of perturba-
tion theory, i.e. to single loop integrals, but the same methods can be
extended to higher orders.}

- The finite loop integrals which result after regularization can be evaluated
by reducing them to certain standard forms using tricks invented for this
purpose by Feynman. We shall obtain these results in Section 10.1.

101 MATHEMATICAL PRELIMINARIES

10.1.1 Some standard integrals

We first list the standard integrals most frequently met in the evaluation of
loop integrals. Below we comment on their derivation.

d*k L, Tn—2) 1
= ) =3, 10.1
J‘(k2 + s+ ig)" 17 I'(n) s"2 " (10.
k#
d*——F— = > 10.
J e i L (10.2)
Kk . T(n—13) g*
4 = 2 ’ = 1 3
J Frstir " am s "7 (103)

! For a full discussion of the technique of dimensional regularization, its applications and
references, we refer the reader to G. Leibbrandt, Rev. Mod. Phys. 47 (1975) 849, G.’t Hooft and
M. Veltman, Nucl. Phys. B44 (1972) 189, and C. Nash, Relativistic Quantum Fields, Academic
Press, London, t978.
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d*p . ,T(n—2) 1
""" pa i . n23, (104
J(Pz + 2pg + t +18)" ' T (t— qZ)n—2 h ( )
p* . ,I(n—2) q*
d+ __— _—in? , >3, 0.
J P (P? + 2pq + t + ig)" m T(n) (t—q) 2 n (10.5)

TyRY
d4 p p
J p(p2 + 2pg + t + ig)"
_ iz D1 = 3) [201 — 3¢'q” + (t — 47)g"']
2I(n) (t—q¢)?

n>4. (10.6)

In the right-hand expressions of Egs. (10.1)(10.6) we have put ¢ = 0 which is
usually permissible. If subsequently this leads to ambiguities, then we must
retain (s + ie) and (¢ + ig) in place of s and t in these expressions. In what
follows, we shall usually anticipate the limit ¢ — 0 in this way.

The formula (10.1) for the case n = 3 is obtained by performing the k°
integration as a contour integral and the subsequent integration with respect
to k using spherical polar coordinates.* The general result for n > 3 follows
by repeated differentiation with respect to s. Eq. (10.2) is obvious from
symmetry. Egs. (10.4) and (10.5) follow from Egs. (10.1) and (10.2)
respectively by changing variables from k and s to

p=k—gq, t=gq*+s. (10.7)

Differentiating Eq. (10.5) with respect to g, leads to Eq. (10.6), and taking
¢ = 0 1n Eq. (10.6) gives Eq. (10.3).

Other integrals involving more complicated tensors in the numerator of
the integrand are easily obtained from the above formulas by differentiation
and changing variables, but the above results suffice for most purposes.

10.1.2 Feynman parameterization

The integrals (10.1)-(10.6) contain a single quadratic factor, raised to the
power n, in the denominators, whereas usually one deals with integrals
containing a product of several different quadratic factors in the denomi-
nator. These more general integrals are reduced to the desired form by means

of an ingenious technique due to Feynman.
For a product of two quadratic factors a and b, one starts from the identity

b
Lo 108

ab b t?

—al, -

! 'This derivation is given in J. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley,
1967, p. 315.
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Defining the Feynman parameter z by
t=b+ (a—b)z, (10.9)
Eq. (10.8) can be written

1 1 dz
ab J [b+ (a— b)a* (1019

We see that by introducing the Feynman parameter z we have expressed 1/ab
in terms of a single factor raised to the power 2. Although at this stage the
integral in Eq. (10.10) may look like a complication, we shall see that
Feynman parameterization allows us to evaluate all integrals straight-
forwardly.

The above method easily extends. For three factors, the alternative results

1
abc= f dxf S P S Sy S

1
=2 L dx L dz [0+ G—axt Cc-aF (10.11b)

are proved by integrating with respect to y and z respectively and using Eq.
(10.10). Eq. (10.11a) generalizes to an arbitrary number of factors, and the
result

4——F(n+l)‘[ dzlf dz, .. J dz,
Aoy a;

[ao +(ay —ag)zy + -+ (an — Ap-1)za]" !

(10.11a)

(10.12)

is established by induction.

Other useful results are obtained by differentiation with respect to one or
more parameters. For example, differentiating Eq. (10.10) with respect to a
gives

L P S 10.13
ab ), P+ (@—ba (10.13)

Finally, we note that the modified photon propagator (9.21) can be written
in the often useful form

1 1 Az dt
- = — _— 10.1
k?— 2241 k*—AZ4ie _Lz k? — t + ie)? (10.14)

which is the identity (10.8) again.
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10.2 CUT-OFF REGULARIZATION: THE ELECTRON MASS
SHIFT

As an illustration of the cut-off method of regularization, we shall calculate
the electron self-energy mass shift dm in second-order perturbation theory.
From Egs. (9.27), (9.28) and (9.4), dm is given by

—eé? fd"'l( 'ya(l“ - k + m)y,

dm = it(p) {(2n)4 (p— k)* —m? + ie

1 1
— 10.15
x [k2 — A2 +ie kP-—A*+ is:l} u(p) ( )

where we have replaced the photon propagator in Eq. (9.4) by the
modification (9.21) to avoid any difficulties which may arise from infra-red
divergences. Eq. (10.15) is simplified by using the contraction identities
(A.14b) and by setting pu(p) = mu(p) and p? = m2. If we also substitute Eq.
(10.14), we obtain

_ ie2 _ 2(k + m) A2 dt
"= 2t u(p) [Jd“k K —2pk + it Lz Tz ie)z] u(p), (10.16)

and applying Eq. (10.13) gives

om = _iei_ i(p) [JAZ dt Jl dz Jd“k
(27t)4 22 0

4k + m)z
e 2pk(l —2) —z + i8]3:| u(p).  (10.17)

The integral with respect to k in Eq. (10.17) is obtained from Egs. (10.4) and
(10.5), leading to

me® (1 Az 2z — 2?
m=—1| d dt ————
"= L z Lz tz + m*(1 — z)?
ma (! Az + m?(l —z)?
=2 L dz(2 — z)In pErpr; p——— (10.18)
This expression remains infra-red finite in the limit 4 - 0, and we can

therefore take A =0 in Eq. (10.18). As A — oo, the integral diverges
logarithmically with the leading term given by

Az 1
dm="oIn" | dz2 —z)+ O(1)
m= Jo

2n
Ima . A )

=224 o). 10.1
T n 4+ 0(1) (10.19)

This is the result quoted in Section 9.3, Egs. (9.37) and (9.28).
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10.3 DIMENSIONAL REGULARIZATION

10.3.1 Introduction

The divergent loop integrals of field theory are four-dimensional integrals in
energy—momentum space. Dimensional regularization consists in modifying
the dimensionality of these integrals so that they become finite. In the first
place, we generalize from a four-dimensional to a D-dimensional space, where
D is a positive integer. The metric tensor g* = g,4 of this space is defined by

g% = —gii=1, i=1,2,...,D—1,}
g* =0, o # B

Correspondingly, a four-vector k* is replaced by a vector with D components

(10.20)

k* = (k% k', ..., kP7Y), (10.21)
and
D-1 .
k? =kk* = (k%) — Y (K> (10.22)

i=1
Loop integrals now become integrals in D dimensijons with the volume
element dk = dk® dk'...dkP?~ !, For example, Eq. (10.1) generalizes to
dPk I'm—-1iD) 1
J iTID/z (n 2 )

(k* + s + ig)" [(n) s 02

for integer values of n > D/2.} For n = D/2 (e.g. for n =2 when D = 4), the
left-hand side of Eq. (10.23) is logarithmically divergent, and the right-hand
side is also singular due to the pole of I'(z) at z = 0. However, for non-integer
values of D, the right-hand side of Eq. (10.23) is perfectly well-defined and
finite. We can therefore use it to define a generalization of the integral on the
left-hand side of Eq. (10.23) to D dimensions for non-integer values of D. In
particular, we shall take D =4 —  where 7 is a small positive parameter.
Restoring ordinary four-dimensional space (and, for example, QED) corre-
sponds to the limit # — 0.

Before going on to QED, we shall illustrate these ideas by a simple but
unrealistic example. Suppose we were dealing with the divergent loop integral

(10.23)

d*k
II(s) = Jm (10.24)

In the cut-off method, we would multiply the integrand by, for example,
(—A?)/(k* — A?) and evaluate the resulting integral .

d*k —A?
IIA(s) = J i1 A (10.25)

t For the method of evaluation of such integrals, see the paper by 't Hooft and Veltman,
quoted in the preamble to this chapter.
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using the methods of Section 10.1. In the limit as A — oo, [T15(s) is of course
logarithmically divergent. However, after renormalization, one would deal
with a difference

IIA(s) — TTA(S0)
and this has the well-defined finite limit

lim {II5(s) — Ma(so)} = —in? In (s/so). (10.26)
A~ o

In the dimensional method, regularization of TI(s) is achieved by using Eq.
(10.23) to define

IL,(s) = J(k—zi%i—s)z =in2~"2 r?(éi)) s™m2, (10.27)
For n — 0, one has - |
s =1—-4inlns+ ... (10.28)
and
r(%):%—w... (10.29)
where y = 0.5772...is Euler’s constant. Hence, one obtains
IL(s) =i 2Tn2 —in%(y + Ins), (10.30)
whence
lirr(l) {IL,(s) — M,(s0)} = —in? In (5/s0), (10.31)
n—

in agreement with the result (10.26) derived by the cut-off method.

10.3.2 General results

In order to apply dimensional regularization to QED, we must extend the
above ideas in two ways. Firstly, we require other D-dimensional integrals, in
addition to Eq. (10.23). Secondly, we must generalize expressions involving y-
matrices.

The retevant integrals are derived from Eq. (10.23) in much the same way
in which the standard integrals (10.2)-(10.6) follow from Eq. (10.1). The only

! See, for example, M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions,
Dover, New York, 1972, p. 255.
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integrals we shall require, in addition to Eq. (10.23), are

r b ku
-~ = 0.
) d k(k2 + 5+ ig)” 0. (10.32)
[ k*k” ) I'n-iD-1) g*»
Dk — gl 2 5 .
) s+ it g (1039
[ k? I'n—-4D-1) D
D — ipD/2 2 s .
| s " arw oo (1034
where Eq. (10.34) follows from Eq. (10.33), since
guvguv =D. (1035)

As regards the meaning of Egs. (10.32)(10.34), they are, in the first place,
derived for integer values of D. For non-integer values, the integrals are
defined by the expressions on the right-hand sides of these equations. We
shall again write D = 4 — » and shall require the limit  —» 0,i.e. D — 4. The
reader may feel some unease as to the meaning of g** in the right-hand-side
expression of Eq. (10.33) when D is not an integer. However, the singularity
of this expression, in the limit 4 — 0, arises from the factor I'(n — D/2 — 1),
whereas g*” is non-singular in this limit. Hence only the value of g¢** for D = 4
enters the final results, and only this value will be required.

We must next see how to handle expressions involving y-matrices. In the
first place, we again consider general integer values of D and introduce a set of

y-matrices y%, y*, ..., y?~ !, which satisfy the usual anticommutation relations

PEyY 4yt = 29" (10.36)
From these one derives contraction and trace relations, analogous to Egs.
(A.14)-(A.18). If the y-matrices are f(D) x f(D) matrices, and I is the
f(D) x f(D) unit matrix [ie. f(D = 4) = 4], one obtains the contraction
identities
'}’)y)" = DI
Yyt = —(D - 2" , (10.37)
vyt = (D — 4P + 4g7F
etc., and the trace relations
Tr (y*) = f(D)g**
Tr (yy%y"y?) = f(D)g*g"° — 979" + g*°¢*"] p,  (10.38)
Tr(%f...y"")=0

where in the last relation (y*y# ... y#y*) contains an odd number of y-matrices.
We shall now take over these y-matrix relations uncritically to the case of
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D = 4 — 5 dimensions, where # is a small positive number, even though the
meaning and existence of y-matrices in a non-integer number of dimensions is
far from clear. In the limit D — 4, the usual relations are restored, and since
these relations (unlike the integrals) are non-singular in this limit, only their
behaviour at D = 4 enters the final results of any calculation, as we shall see
explicitly in the next two sections.

104 VACUUM POLARIZATION

We shall now use dimensional regularization to derive the vacuum polariza-
tion expression

1 k2z(1 —
AT = — 2% J dzz(l — 2)In [1 - L(Ti)] (9.68)
Y 0 m ,
which we only quoted in Chapter 9.

We take as starting point Eq. (9.8) for the photon self-energy loop which,
after dimensional regularization, reads

e = =€ N*(p, b -
0= o [ s b (0

where
N¥(p, ky=Tr [y(p + k + mpy’(p + m)]. (10.40)

Evaluating the trace by means of Eqgs. (10.38) gives

N®(p, k) = f(D){(p* + k*)p” + (p* + K*)p* + [m* — p(p + k)]1g*"}.
(10.41)

After Feynman parameterization and use of Eq. (10.10), we can write Eq.
(10.39)

2 1 uv
. AT _ —€ D N (P, k) . 0.42
eI = 5 L dz Jd P —m e ol v (049

If we introduce the new variable

q=0p+kz, (10.43)

Eq. (10.42) becomes

' _e? (1 N®(q — kz, k)
ey — D ? 10.44
O = Gy L dzf g vedi—g-m e 1O

with
N*(q — kz, k) = f(D){[29"q" — q°¢""] + [m* — K?z(1 — 2)]g""
+ [—22(1 — 2)(k*k* — k*g*™)] + ...} (10.45)
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where the dots indicate that terms linear in g have been omitted, since these

terms vanish on integration, by Eq. (10.32). Combining the last two equations,
we obtain

ie*T1*v(k) = (2 Gnf f(D)J dz Z I*(k, 2), (10.46)
where, using Eqs. (10.23) and (10.32)—(10.34), we have

[2¢"¢" — ¢°¢""]
Ik, z) = b
(k. 2) Jd q[qz-i—kzz(l —2) — m? + ig]?

ig"'nP*T (1 — 4D)
- [k2z(1 — z) — 231 oz (1~ 3D), (10.47a)

1
nv — 2 _ 12 _ nv
12 (k9 Z) = [m k Z(l Z)]g Jd q [qz + k22(1 _ Z) _ m2 + i8]2

inP21(2 - 1D)
[k2z(1 — z) — m2}2~ D12
= I, 2), (10.47b)

= [m? — k2z(1 — 2)]}g*”

and

1
[q% + k%z(1 — z) — m? + ig}?

I8k, z) = [—22(1 — z)(k"k® — k*g*")] Jd”q

inP?T'(2 — 4D)

= —2z(1 — 2)(k"k* — k?*g*") 0 = = mz]z_m. (10.47¢)
Substituting Egs. (10.47a)—(10.47c) into Eq. (10.46)’ gives
(k) = (k*k* — k2g*)I1(k?) (10.48)
where
Ti(k?) —ﬂw 01 @ i _Z(Zl)—_ Zrzl o (1049)
It follows from Eq. (10.48) that the gauge condition
k JI*(k) =0 (10.50)

holds for any four-vector k! Using dimensional regularization, gauge

1 That Eq. (10.50) is a consequence of the gauge invariance condition (8.32) can be seen as
follows. Inserting a vacuum polarization loop in an external field line [for example, going from
Fig. 9.1 to Fig. 9.2(c)] leads to the following modification of the corresponding Feynman
amplitude

M K)ALK) — H(K)AXK) = [M(k) + A (K)iDF(K)ie T, (k)]A%(K). (10.51)

If A and .#’ satisfy the gauge condition (8.32), then Eq. (10.50) must hold.
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invariance is automatically satisfied. This is a general result and follows from

“the fact that dimensional regularization preserves local symmetries of the
Lagrangian, suchi as gauge invafiance.

Fmally we set D = 4 — 5 and take the limit # — 0. Since f(4) = 4, and
using Eqgs. (10.28) and (10.29), we obtain from Eq. (10.49) in the limit as
n—0

1 2 1 1
I1(k?) = 52 <; - y) — 33 L dzz(1 — z) In [k?z(1 — z) — m?].
(10.52)

Comparing Eq. (10.48) with Egs. (9.11) and (9.15) gives
I1(k?) = A'(0) + TL(k?), (10.53)
and since IT.(0) = 0 we obtain from the last two equations

TL(k?) = e*[I1(k?) — T1(0)]
= —2—afldzz(1 —z)ln|:1 —I—czz(l—z_z)] (10.54)
T Jo m

which is the required result (9.68).

10.5 THE ANOMALOUS MAGNETIC MOMENT

As a second application of dimensional regularization we shall derive the
anomalous magnetic moment of the electron to order a, Eq. (9.72).

We saw in Section 9.6.1 that this correction to the magnetic moment stems
from the vertex correction, Fig. 9.15(c), given by Eq. (9.48). By dimensional
regularization, retaining the infra-red cut-off 4, we can rewrite this equation

e*A(p', p)
_' 2 Jdp Nll(p’, p, k)
(211)4 (k2 = A2 +i)[(p' — k) —m? + ie][(p — k)* — m* + ig]
(10.55)
where
N*p', p, k) = y*(F — k + mpy" (P — k + m)y.. (10.56)

By means of Feynman parameterization [Eq. (10.11b)], we can write Eq.
(10.55) as

2 r 1-y 2N¥(p', p, k)
ZAu ’ =i b P, P,
e“A*(p', p) ) L dy L dz Jd k [k? — 2k(p'y + pz) — r + ic]?
(10.57)
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where
r=12(1—y—z2)— y(p? — m?) — z(p* — m?). (10.58)
Expressed in terms of the new variable
tr=k*—a*=k*— (p'y+ pz)*, (10.59)
Eq. (10.57) becomes
AP, D) = o )i Jl dy Ll "4z Jdbt [iNj(rp,ilzzt:iZs' (10.60)

In order to carry out the t-integration, we rearrange N*(p’, p,t +a) as a
sum of terms proportional to different powers of ¢

N"p,pt+a)= Z N¥(p, p), (10.61)
where
NP, p=y(F — ¢+ my(§ — ¢+ my, (10.62a)
Ni(p, p = =y (P —d+m + (F — ¢+ myfly. (10.62b)
N5(p', p) = V"1V Fa- (10.62¢)

(For simplicity we have written N¥(p’, p), although in addition to being
functions of p’ and p, N% depends on a, N4 on t,and N4 on botha andt.) Eq.
(10.60) can then be written

2
eA(p, p) = ) e’Al(p, p) (10.63a)
i=0
where
ie? (1,17 2NH(P, P)
Al Dy AYa . (10.63b
AP, p) = (2r )4J dyL dZJ‘d [t2 ~r —a® +ie]® ( )

Of the three terms in Eq. (10.63a), A% vanishes since the integrand is odd in ¢
[see Eq. (10.32)], A% is non-vanishing and finite in the limit D — 4, and A4
diverges in this limit,

We first consider the divergent term A%4. Substituting Eq. (10.62c) in Eq.
(10.63b), we evaluate the t-integral by means of Eq. (10.33) and obtain

e nPPrQ-—3py (* 17 VyaY Yy
2/\“ ’ = 2 a a .
AP =T TR L dy L S e
(10.64)

Setting D = 4 — nand taking the limit 4 — 0, one obtains from this equation,
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on account of Eqgs. (10.37) and (10.28), (10.29),

2 / a 1 1=y 2 2
eNﬁ(P’P)=V”5“ dy dz<[=—y|—In[~( +a®)];-
T Jo 0 n
(10.65)

In Chapter 9, the observable part A%(p’, p) of the vertex correction was
defined by the equation

AP, p) = Ly* + AL(P', p). (9:53)

We have now shown that the divergent part of A*(p’, p) is given by the 1/n
term in A4(p’, p), Eq. (10.65). In identifying Eq. (9.53) with Eq. (10.63a), this
1/n term is incorporated in the term Ly* of Eq. (9.53). It follows that A%(p’, p)
is finite, as shown by a different approach in Section 9.5.

In order to derive the anomalous magnetic moment of the electron, we next
consider the observable corrections which the vertex modification e>A*(p/, p)
contributes to the scattering of electrons by an external static electromagnetic
field. The Feynman amplitude for this is given by

M = ieu(p)e AP, pu(p)Aeq=p — p). (10.66)

The most general form for this amplitude, allowing for Lorentz invariance,
the Lorentz gauge condition

q,45(q) =0 (10.67)
and the Gordon identity (see Problem A.2) is

M = e PFAG) + 5 G Fa@)uPAu@  (1068)

where F, and F, are arbitrary functions of g% In order to calculate the
magnetic moment, we need only consider the second term in Eq. (10.68).
Comparing Egs. (10.68) and (10.65), we see that A4 makes no contribution to
F,(q?), so that the correction to the magnetic moment arises entirely from the
term A§( p’, p), defined by Egs. (10.62a) and (10.63b). The t-integration in the
latter equation is easily carried out, using Eq. (10.23) with D = 4, and leads to

— 1 1-y i N* '
(P )e>Ab(p', pyu(p) = 4—: L dy L 4z e )(r"j_paz’; )u(p)

. (10.69)

Eq. (10.69) is a well-defined finite expression. The remaining analysis
required to obtain the anomalous magnetic moment is straightforward but
lengthy and we shall omit it. It involves evaluation of the spinor matrix
element a(p )N%(p', p)u(p), utilizing the commutation and contraction rela-
tions of the y-matrices, the Dirac equation, the Gordon identity and the
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Lorentz condition (10.67). Retaining only terms which contribute to the mag-
netic moment [i.c. are of the form of the second term in Eq. (10.68)], one

obtains
m?a 1 1=y (y+21—y—2)
Fyg®)=——| d d .
A= L yL PA—y—2+(py+ p2)

This integral is well-defined in the limit A - 0. Hence setting A = 0 and
p’ = p, with p? = m?, gives finally

l—y—z o
F(0) = J J iz " 2n (10.70)

which is the second-order correction to the magnetic moment quoted earlier,
Eq. (9.72).

PROBLEMS

10.1 Derive Eq. (10.26) from Eq. (10.25), ie. by using the cut-off method of
regularization.
10.2 In the dimensional regularization scheme, the electron self-energy (9.4) is given

by
P(# — K + m)y’ gas
ie dPk
52 (P = (2n)"'_[ (P—RF—m +iek2— A2 + e

in the limit as D — 4, where we have also introduced a small cut-off parameter 4
to guard against infra-red divergences.

Evaluate ie? Y (p), retaining only those terms which diverge in the limit
n=4— D — 0, and compare your result with the expansion

s 2 ()= —dm + (§ —m)(1 — Z3) + (§ — m)edZ(p).
Hence show that the corresponding contributions to dm and Z, are given by

3am 1/«
‘5'"“<2n) Zz‘"(h)

while Z(p) remains finite.

Evaluate the corresponding contribution to the vertex renormalization
constant Z, = (1 — e3L + ...) using Egs. (9.53), (10.63) and (10.65). Hence, use
Ward’s identity to check the above value for Z,.




CHAPTER 11

Weak interactions

11.1 INTRODUCTION

So far we have exclusively studied electromagnetic interactions and have seen
that perturbation theory is spectacularly successful in handling these.
Another area where perturbation theory should be valid is the weak
interactions, of which historically the first and perhaps best known example is
the nuclear f-decay process

n->p+e +7v,} (11.1)

The rest of this book is devoted to the modern theory of weak interactions.
This theory represents a remarkable breakthrough: the unification of the
electromagnetic and weak interactions into the electro—weak interaction. In
this standard electro—weak theory, as it is called, the weak interactions are
transmitted by heavy vector bosons, analogously to the transmission of
electromagnetic forces by photons. The electro-weak theory accounts
successfully for the experimental data on weak interaction phenomena. Since
the vector bosons predicted by the theory are very massive, they can be
detected in experiments at extremely high energies only. Very recently, such
experiments have been successfully carried out, i.e. they have established the
existence and the predicted properties of these vector bosons.

The weak interaction processes subdivide into three classes according to
the types of particles involved. Particles participating in strong interactions,

! For general background reading on weak interactions the reader is referred to D. H. Perkins,
Introduction to High Energy Physics, 2nd edn, Addison-Wesley, Reading, Mass., 1982.



236 Weuk interactions  Chap. 11

eg n, p, m, A, are called hadrons. Leptons are all those fermions which
participate in weak and electromagnetic interactions only.* In Section 7.4 we
met the charged leptons e*, u*, ... which participate in both electromagnetic
and weak interactions. In addition, we now have the corresponding neutrinos
and antineutrinos ve, v, ..., Ve, ¥,, ..., which participate in weak interactions
only. Accordingly, we distinguish: (i) purely leptonic processes like

T e + V.t v, (11.2)
U~ —se” + V. +v,, (11.3)

(ii) semi-leptonic processes involving hadrons and leptons like the f-decay
process (11.1) and (iii) purely hadronic processes like the A-decay

A->p+m=m~. (11.4)

We have only a very limited understanding of strong interactions and they
cannot be treated in perturbation theory. In contrast, we believe that
perturbation theory is valid for weak and electromagnetic interactions, and
that we understand the latter. Consequently, purely leptonic processes afford
an unambiguous and far simpler field for studying weak interactions, and we
shall restrict ourselves to purely leptonic processes. This is analogous to our
treatment of QED where we also did not consider hadrons.}

In this chapter we shall develop and apply the intermediate vector boson
(IVB) theory, which is the forerunner and basis of the modern theory. We shall
see that the IVB theory describes many processes successfully but that it also
leads to serious difficulties and consequently does not constitute a satis-
factory fundamental theory.

11.2 LEPTONIC WEAK INTERACTIONS

The electron—positron field enters the QED interaction in the b11mear
combination of the electromagnetic current, i.e.

Hoep(X) = —eP(x)y"P(x)Ax(x). (1L.5)

The weak interaction Hamiltonian density responsible for leptonic processes
is similarly constructed from bilinear forms of the lepton field operators.” The
experimental data on a wide range of leptonic and semi-leptonic processes
are consistent with the assumption that the lepton fields enter the interaction
only in the combinations

Jo(x) = Zl: Pyl — y5)y () (11.6a)

* We are, of course, throughout ignoring the very much weaker gravitational forces.

§ For an excellent up-to-date comprehensive account of all aspects of weak interactions, see D.
Bailin, Weak Interactions, 2nd edn, Adam Hilger, Bristol, 1982.

4 By leptonic processes we shall in future always mean purely leptonic processes.
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Jix) = ;'Fv,(X)va(l — ysWi(x). (11.6b)

In Egs. (11.6), I labels the various charged lepton fields, [ = ¢, y, ..., and v; the
corresponding neutrino fields. y; and y,, are the corresponding quantized
fields. ¥, is linear in the absorption operators of the I~ leptons and in the
creation operators of the I* leptons, etc. In analogy to the electromagnetic
current in Eq. (11.5), one calls J,(x) and J }(x) leptonic currents since they too
transform like vectors under continuous Lorentz transformations and imply
certain lepton number conservation laws, as we shall see.

There is of course no unique way of constructing the leptonic interaction
from the currents (11.6). In analogy with our description of the electro-
magnetic interaction as being transmitted by photons, we would like to
describe the weak interactions as due to the transmission of quanta. These
are called W particles. The QED interaction (11.5) then suggests the leptonic
interaction of the IVB theory '

HX) = gwJ (X)W (x) + gwJ (X)Wi(x), (11.7)

where gw is a dimensionless coupling constant and the field W,(x) describes
the W particles. With this interaction, processes such as the muon decay
process (11.3) or the neutrino scattering process

Vet+e o v.t+e

are described, in lowest-order perturbation theory, by the Feynman graphs in
Figs. 11.1 and 11.2. In each case the interaction between the two leptonic
currents is brought about through the exchange of one W particle,
analogously to the one-photon exchange of electron—electron scattering, Fig.
7.14.

We shall now study the interaction (11.7) in more detail. We note, first of
all, that this interaction couples the field W,(x) to the leptonic vector current.
Hence it must be a vector field, and the W particles are vector bosons with
spin 1.} Since each term in the leptonic currents (11.6) (i.. each vertex in a
Feynman graph) involves a charged and a neutral lepton, the W particles are
electrically charged and the W(x) field is non-Hermitian.

We can also infer that the W boson must be very massive. General
arguments relate the range of a force to-the mass of the quanta transmitting it.
The long range of the electromagnetic forces results from the zero mass of the
photon. In contrast, the weak interactions are of very short range and the
mass of the W boson, my, must be very large. As we shall see in Section 14.1,

*We shall see in Section 11.3 that W,(x) satisfies the Lorentz condition d*W,(x) =
Consequenlly, the field W, (x) possesses only three 1ndependent states of polarization and
describes spin 1 particles.
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K v

Fig. 11.1. Muon decay:
u o—oe + v+ v,

Ve e

e Ve

Fig. 11.2. The scattering process
Vet+e —ov.+e .
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Fig. 11.3. The production of the W~ boson in a pp collision and its
leptonic decay W~ — e™ + ¥,.

(he standard electro-weak theory makes the quite specific prediction

29
—— <83.0 i ; 7) GeV (11.8a)

where the error stems from experimental uncertainties in the basic constants
of the theory.

Recently, these predictions have been spectacularly confirmed in very high-
cnergy experiments on the pp collider at CERN. In this machine, protons and
anliprotons collide with a total centre-of-mass energy of 540 GeV. Such a
collision can lead to a quark (q) and an antiquark (¢) combiningto forma W
boson which may decay via the weak interaction (11.7); for example, into
clectron plus electron-antineutrino. The Feynman graph for this process is
shown in Fig. 11.3. Two experimental groups, known as the UA1 and UA2
collaborations, using different detection systems, have up-to-date detected 52
and 35 such events respectively. From the analysis of their results, they obtain
the following values * for the mass of the W boson

mw = (809 £ 1.5 + 2.4) GeV (UAD) } (11.8b)

my = (81.0 + 2.5 £+ 1.3) GeV (UA2) ’
where, in each result, the first error is statistical and the second systematic.
(We shall also use this convention later.) The number of such events which
hus been observed is consistent with that expected from theoretical estimates.

In Section 7.4 we introduced lepton numbers

N(e) = N(e™) — N(e™), (7.53a)
cle., and saw that these are conserved in electromagnetic processes. It is
U'These data are taken from the papers by M. Spiro (UA1) and by A. Clark (UA2) in the

Proceedings of the 1983 International Symposium on Lepton and Photon Interactions at High
Energies, Cornell University, 1983,
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obvious that the interaction (11.7) does not conserve these numbers, nor
indeed are they conserved in the reactions (11.1)-(11.3). However, if we
modify the definition of lepton numbers to

N(e) = N(e™) — N(e*) + N(v.) — N(7,)
Ny = N(u™) — N(u™) + N(v,) — N(3,) (11.9)
N(@) = N(@@7) = N(z*) + N(v.) — N(¥)

then the currents J,(x) and J}(x), Egs. (11.6), do conserve lepton numbers.
For example, the term

lpe(x)ya(l -7 5)'l’vg(x)

in Eq. (11.6a) is linear in electron creation and positron absorption operators,
and in v, absorption and v, creation operators. It follows that any interaction
built up from these leptonic currents, as the interaction (11.7) is, conserves
lepton numbers. This is in agreement with experiment, where lepton number
conservation is found to hold for all processes, whatever particles or
interactions are involved. For example, in bombarding nuclei with muon
neutrinos, the process

v+ (Z, A > (Z+1,A)+pu” (11.10)
is allowed by lepton number conservation, while
vo+(Z, A > (Z-1,4)+pu* (11.11)

is forbidden. No forbidden processes, such as (11.11), have been observed,
within very small upper bounds, in experiments especially designed to detect
them. The evidence for tauon number conservation is weaker—due to lack of
data—but we shall assume it to hold.

In describing the neutrinos in the interaction (11.6) and (11.7) by spin 4
Dirac fields, we are not assuming, as is sometimes done, that the neutrinos
have zero mass. The experimental limits on the masses are very small:

mve) < 50eV,  m(v,) <05MeV,  m() < 0.25GeV.

Since the corrections to the theoretical transition rates due to non-zero
neutrino masses are of the order [m(v;)/m;]?, one can put the neutrino masses
equal to zero in comparing theory and experiment. However, we shall retain
non-zero neutrino masses in our basic equations.?

The interaction (11.7) is known as a ‘V-A’ interaction since the current

! We assume throughout that massive neutrinos are described by four-component Dirac fields.
An alternative description in terms of two-component spinor fields, known as Majorana fields, is
possible. For zero-mass neutrinos, these descriptions are equivalent. See T. D. Lee, Particle
Physics and Introduction to Field Theory, Harcourt, New York, 1981, pp. 53-54.
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J*(x), from which it is built up, can be written as the difference
JA(x) = J{(x) — Ji(x) (11.12a)

of the vector current
V(x) = ; Yy, (%) (11.12b)
and the axial vector current
Jax) = ; Py sy (). (11.12¢)

Under the parity transformation (x, £) - (—x, t), J%(x) changes sign, while

4(x) does not.* Hence the interaction (11.7) is clearly not invariant under
spatial inversion, and parity is not conserved. (Indeed, this is not peculiar to
purely leptonic processes but is a characteristic of all weak interactions.) This
has its most striking consequences for the neutrinos. Assume, first of all, that
the neutrinos have zero mass. In this case we know from Appendix A, Eq.
(A.43), that (1 — y5)/2 is a helicity projection operator. Since ¥, (x) is linear in
neutrino absorption operators and in antineutrino creation operators, it
follows from Egs. (A.40) that the operator

(%) =31 — ys)y, (x) (11.13)

which occurs in the interaction (11.6)~(11.7) can annihilate only negative
helicity neutrinos and create only positive helicity antineutrinos. Hence in
weak interactions, only these states play a role, and positive helicity neutrinos
and negative helicity antineutrinos do not partake in weak interaction
processes.

The operators

P,
P‘“} =41 F ys) (11.14)
R

are of course always projection operators (since PZ = Py and Pg = 1 — P;),
independently of the particle mass m of the fermion field. However, for
particles of non-zero mass m the states projected out by Py and Py are helicity
cigenstates only in the high-energy limit in which the particle energy is very
large compared to the particle mass m. For neutrinos, this will always be a
very good approximation in what follows, even if their masses are not
precisely zero. However, it may also be a good approximation for high-
energy charged leptons. In analogy to Eq.(11.13), we define the ‘left-handed’
charged lepton fields

Yr(x) = Puyi(x) = 2(1 — ys)f(x). (11.15)

tSee Appendix A, Egs. (A.53) and Problem A.1.
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One easily shows that the leptonic current (11.6a) can be written

Ja(x) =2 Zl ﬂ(x))’ail/lv“,(x) (1 1.16)

so that, as for the neutrinos, only the left-handed fields are involved for the
charged leptons. Thus, if the electrons (positrons) emitted in a weak-
interaction process are highly relativistic, they will have negative (positive)
helicity. For example, this will be the case for most of the electrons and
positrons in the muon decay processes

p-ooe + v+, utoet +v.+9,. (11.17)

11.3 THE FREE VECTOR BOSON FIELD

The simplest equation for a vector field W#(x), describing particles of mass
my and spin 1, is the Proca equation

OW=(x) — 0% Wh(x)) + mi W*(x) = 0. (11.18)

On taking the divergence of this equation, one automatically obtains the
Lorentz condition

0,W¥x)=0 (11.19)

for my # 0. This is in contrast to the photon case, where the Lorentz
condition must be imposed as a subsidiary condition. On account of Eq.
(11.19), the Proca equation (11.18) reduces to

OW*(x) + mp W*(x) = 0. (11.20)
A free-field Lagrangian density which leads to Eq. (11.18) is
L(x) = —3Flpap(X)F(x) + mi Wi(x)W*(x) (11.21a)
where
F¥(x) = P W(x) — 0*W¥(x). (11.21b)

We are taking W*(x) and F3(x) as non-Hermitian fields since the W bosons
are electrically charged particles.

To establish the connection with the particle description, we expand the W
field in the usual way in a complete set of plane waves:

Wi (x) = W**(x) + W*"(x) (11.22a)
where

1 \12 .
W (x) = ; Y (2 Vwk) ex(k)a, (k) e i+ (11.22b)
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- = 1 12 a t ikx
Wi (x) = ;Z <m) e2(k)bi(k) e (11.22¢)
and
oy = (miy + k)1 (11.23)

| Egs. (11.22) are analogous to Eqgs. (3.27a) and (5.16) for charged scalar
mesons and photons.] The vectors eX(k), r = 1, 2, 3, are a complete set of
orthonormal polarization vectors, i.e.

e(k)es(k) = — &, (11.24)
and the Lorentz condition (11.19) implies the conditions
kegr(k) =0 (11.25)

for the polarization vectors. In the frame in which k = (w,, 0, 0, |k|), a suitable
choice of polarization vectors is

g1(k) = (0, 1,0,0)
g,(k) = (0,0, 1, 0) . (11.26)
83(k) = (lkl, 0, 0, wk)/mW

The completeness relation
3
Y &(k)ef(k) = —g* + k%P im}, (11.27)
r=1

follows directly from Egs. (11.26).

It should be self-evident to the reader that quantization of the Lagrangian
(11.21) by means of the canonical formalism allows us to interpret a,(k) and
b.(k) as annihilation operators of vector mesons of mass my, momentum k
and polarization vector g/(k), with al(k) and b}(k) the corresponding creation
operators. In order that the interaction (11.7) implies conservation of electric
charge, we shall want to associate a,(k) and af(k) with positively charged
bosons (W), and b,(k) and b}(k) with W~ bosons.

Lastly, we require the W boson propagator N

OIT{W* ()W (y)}0) = iDF(x — y, my) (11.28)

where we have explicitly shown the dependence on the mass my. This
propagator is derived by the same method by which the scalar meson
propagator was obtained in Section 3.4. We shall omit the derivation* and

* An explicit derivation is given on pp. 96-97 of D. Bailin’s Weak Interactions, quoted in
Section 11.1. The relation of the W propagator to the photon propagator is discussed in C.
ltzykson and J. B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980, Section 3-2-3.
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only quote the result. With

1 .

iD;ﬂ(X, mW) = W Jd‘tk C—‘kxiD;ﬁ(k, mW), (1 129)
the W propagator in momentum space is given by
i(—g* + k*kf/m3y)

K2 —m3 + ic (11.30)

lD‘lz:ﬂ(k9 mW) =

11.4 THE FEYNMAN RULES FOR THE 1IVB THEORY

We now easily write down the Feynman rules for treating leptonic processes
in perturbation theory.

The basic vertex part which arises from the interaction (11.7) is shown in
Fig. 11.4. It consists of two lepton lines (representing a lepton-number-
conserving current) and a W boson line. The only restrictions at the vertex
are that lepton numbers and electric charge are conserved. Hence Fig. 11.4
stands for many different processes, for example those in Fig. 11.5, where in
each diagram there may occur absorption or emission of a W* boson of the
appropriate sign to conserve charge. Substituting the leptonic interaction

I
i+

Fig. 11.4. The basic vertex part
of the IVB interaction.

Fig. 11.5. Three particular cases of the basic vertex diagram in Fig. 11.4.
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(11.7) in the S-matrix expansion (6.23), one sees that corresponding to
Feynman rule 1 of QED (see Section 7.3) we now obtain the Feynman rule

10. For each vertex, write a factor

—igwy*(1 — ys). (11.31)

The Feynman rules for electron propagators and external lines, given in
Section 7.3, only require trivial relabelling to apply to all leptons. In the
Feynman rule 3 for the lepton propagator (7.48), m now stands for the mass
m; or m, (I =e, p,...) of the lepton involved. In the Feynman rule 4 for
cxternal line factors, Egs. (7.49a) and (7.49b) become the factors appropriate
to negative leptons !~ and neutrinos v;, and Egs. (7.49¢c) and (7.49d) the
factors appropriate to the corresponding antiparticles I* and v,. Hence we
only need the rules for internal and external W lines, corresponding to rules 2
and 4 for photons. These are

11. For each internal W boson line, labelled by the momentum k, write a
factor

. (= gap + kakg/miy)  (a) K (B
D « k, = - . 11.
1Dgap(k, mw) K —m + i P NP (11.30)
12. For each external initial or final W boson line, write a factor
i~ (initial)
Era(K) . (11.32)
(‘1()\/\1/\/\ (final)

As for photons, if complex polarization vectors are used, we must write ¥ (k)
for a final-state W boson, instead of ¢,,(k).

1.5 DECAY RATES

Before calculating the rate for muon decay, we first derive the general
expression for the decay rate of any process in terms of the corresponding
Feynman amplitude. We consider a particle P decaying into N particles
P, P, ..., Py

P> P, +P,+- +Pj. (11.33)

The relation (8.1) between the S-matrix element and the Feynman amplitude
then reduces to

1 1\
Sfi = 5fi + (27'5)45(4)(2 p,f - p) (ZVE)l/Z I_fI <2VE/f) I:I (2ml)1/2‘/”
(11.34)
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where p = (E, p) and p}; = (E}, p}), f= 1, ..., N, are the four-momenta of the
initial and final particles, and the index ! runs over all external fermions in the
process. From Eq. (11.34) one obtains for the decay rate w (i.e. the transi-
tion probability per unit time) from a given initial to a specific final quantum
state

1
w = (Qn)*$“C p; — p) §E< SVE )(ﬂ (2m,)> |#)2, (11.35)

analogously to Eq. (8.6). The differential decay rate dI" for the process (11.33)
to final states in which the particle P, has momentum in the range d3p) at p’,
etc.,, is obtained by multiplying w by the number of these states, given by Eq.
(8.7), yielding
14 d3p/
dll'=w f
I;I (2n)>.

45(4) 1 d’p; 2
= Q2n)*6“Y p; — 2E <H (2'"!))(1;1 (2n)32E’,) [#)*. (11.36)
This equation is our general result. To take the analysis further we must
consider a specific process. The energy-momentum conserving d-function in
Eq. (11.36) is eliminated in the usual way by integrating over the appropriate
final-state variables. Eq. (11.36) gives the transition rate between definite
initial and final spin states of all particles. To obtain the total decay rate I'" for
the process (11.33) we must sum (11.36) over all final spin states and integrate
over all final-state momenta.
So far we have considered only the decay mode (11.33) of the particle P. In
general, there may be several decay modes. The branching ratio B for the
decay mode (11.33) with decay rate I is defined by

B=T/3T (11.37)

where Y T is the sum of the decay rates over all decay modes, ie. Y. I' is the
total decay rate. (It is also called the total decay width.) The life time of the
particle P is then given by

T=c==

TT-

1 B
p— 11.38
( )

11.6 APPLICATIONS OF THE IVB THEORY

In this section we shall apply the IVB theory to three leptonic processes: (i)
muon decay, (iii) neutrino scattering, and (iii) the leptonic decay of the W
boson. We shall give the analysis of the muon decay in some detail, which
should enable the reader to perform similar calculations, and we shall there-
fore treat the two other cases much more concisely.
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11.6.1 Muon decay

As our first application we shall consider one of the best studied leptonic
processes, the muon decay

/‘_(P, r) - e——(Pl, r,) + ge(ql’ rl) + Vu(‘b’ r2)9 (1139)

where p is the four-momentum of the muon and r labels its spin, etc. In lowest
order of perturbation theory, this process is represented by the Feynman
graph in Fig. 11.6. The corresponding Feynman amplitude follows from the
Feynman rules and is given by

M= —gh[a@)y*(1 — ys)v(q1)]

i(_gaﬂ + kakﬂ/m%i')
X .
k? —m% + i

[i(q2)y*(1 — y5)u(p)] (11.40)

where we suppressed the spin indices and
k=p—q=p +4q. (11.41)
In the limit myp — oo, the Feynman amplitude (11.40) reduces to

iG
M= —ﬁ[a(p')v“(l — ys)0@)I[E@( — yu@]  (1142)

plp,r) v, (92,72)

e (p,r")

Ve (q1.74q)

Fig. 11.6. Muon decay.
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[ u

Ve

Fig. 11.7. The Feynman diagram describing muon
decay in terms of the contact interaction (11.44).

where G 1s defined by

% - <§._:>2' (11.43)

The same expression would have been obtained for the Feynman amplitude
of this process if we had calculated it in first-order perturbation theory from
the interaction

HF(x) = ;—/(% JHxX) §(x). (11.44)

Eq. (11.44) represents a contact interaction of four lepton fields. Such a
contact interaction was first proposed by Fermi in 1934 to describe the
nuclear f-decay process (11.1), and G is known as the Fermi weak interaction
coupling constant. The Feynman diagram representing the amplitude (11.42)
is shown in Fig. 11.7.

For large but finite values of my, the amplitude (11.40), calculated from the
IVB interaction, differs from the amplitude (11.42), calculated from the
contact interaction, by terms of order (m,/my)?, i.e. of order 10~ ¢ for the W
mass (11.8). The corresponding decay rates differ by terms of the same order.
We conclude that our picture of muon decay is the same in both modes of
description. This is typical of low-energy processes where, in effect, the
propagator (11.30) is replaced by ig,s/m7,. Consequently, we shall use the
amplitude (11.42) in calculating the muon decay rate.

The differential decay rate for the muon decay is obtained from the general
expression (11.36) and is given by

dT = Qm*5“(p + 4; + 4 — p) 2
o 1 d3p, d3q1 d3q2
2n)° E' E;, E,
where p= (E,p), P =(E,p)and q; = (E., q;), i=1,2.

Wik (11.45)
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To obtain the total decay rate from Eq. (11.45), we must sum over all final
spin states and integrate over all final momenta.

We first deal with the spins. The life time of the muon is, of course,
independent of its spin state. Hence we shall also average over the spin states
of the initial muon, in order to express the result as a trace.t Using the
standard techniques, developed in Section 8.2, to sum over final spin states
and average over initial spin states, one obtains

mumem, my 3 3 | M|
spins

2
T 64
x Tr [(42 + my )ya(1 — ys) (P + mu)yp(1 — v5)]

Tr [(F + mey*(1 = ys)ds — m )o(1 — y5)]

2

G T Ly — 1) — 75)] Tr [davell — ) Bra(l — 75)]

" 64
(11.46)
where in the last line we have taken the limits m, - 0, m, — 0.
We evaluate the first of the traces in Eq. (11.46), ie.
E® = Tr [#y*(1 — ys)d1y’(1 — ys)]. (11.47)
Using
[ys,7°1+ =0, a=0,..,3, (1 —7ys5)? =2(1~ys),
we obtain
E* = 2p.q1, Tr [y"y™"(1 — y5)],
and using Eqgs. (A.17) and (A.21) this reduces to
E* = 8p,q,,x"*** (11.482)
where
xhovE = guagvﬂ _ guvgaﬂ + guﬂgav + jghavE. (11.49)

It follows at once that the second of the traces in Eq. (11.46) is given by

M.p = Tr [427.(1 — vs) Bra(l — 5)] = 843P Xqurp. (11.48b)
Substituting Eqs. (11.48a) and (11.48b) into Eq. (11.46) gives

mumemy, m, 5 3 | M|? = G?pq1vx""q3 PX guep- (11.50)

spins

* For zero-mass neutrinos, the emitted ¥, and v, have definite helicities. By summing over the
helicities of these neutrinos, leaving it to the helicity projection operators in the interaction to
select the appropriate helicity states, one again ensures that the result is expressed as a trace.
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From the definition (11.49) and Egs. (A.14c) it follows that
XX g = 4400 . (11.51)
By means of this relation, Eq. (11.50) reduces to our final result for the spin

sum

mymem, m, 3 Y, |#)* = 4G*(pq:)(p'q2), (11.52)
spins

in the limit m, — 0 and m,, —> 0.

Combining Eqs (11.45) and (11.52), we obtain the unpolarized differential
decay rate
4G? d3 d3q, d? 9
= "4 )9 p'
anE (Pa(P'a2)0(P" + a1 + 42 — P) - E L

We next carry out the phase space integrations, starting with integrals over
the neutrino momenta, given by

(11.53)

gV
I"(g) = | d%q; dqz 192 5)q, + g, — q) (11.54)
E\E,
where

q=p-7p. (11.55)

It follows from the Lorentz covariance of the integral (11.54) that its most
general form is

1*(q) = " A(@*) + ¢“9’B(¢?). (11.56)

From this equation it follows that
g 1*(q) = 44(4%) + ¢°B(¢?) (11.57a)
4.4.1"(@) = ¢*A(4*) + (¢*)*B(q?). (11.57b)

From now on we shall take the neutrino masses as zero so that
g% = q% = 0 and, on account of the §-function in (11.54),

4> =2(q142). (11.58)

In order to find A(q*) and B(q?), we calculate the expressions on the left-
hand sides of Egs. (11.57). From Egs. (11.54) and (11.58) we obtain

Jd‘hdqz

5 - q) = 14*1(g? 11.59
E, E, (91 + 92 — @) =3971(q%). ( )

guv "(q) =

We see from its definition that the integral I(¢?) is an invariant, so that it can
be evaluated in any coordinate system. We shall choose the centre-of-
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momentum system of the two neutrinos. In this system q, = —q,, so that
= 0, and the energy w of either neutrino is given by
w=E, =|qi| = E; = |q2]. (11.60)
Hence,
20 —
I(¢*) = Jd?’qlé(—wc()—z—‘li):zn (11.61)
and from Eq. (11.59)
gwl*(q) = nq>. (11.62a)
Similarly, one finds from Eqgs. (11.54), (11.58) and (11.61) that
2,4.1"(¢%) = 399)*I = in(g®)*. (11.62b)

From Egs. (11.57) and (11.62) we can find A(¢%) and B(q?), and substitﬁting
these into Eq. (11.56) leads to
I*(q) = $n(¢"'q* + 2¢"q"). (11.63)
From Egs. (11.63) and (11.53) we obtain the muon decay rate for emission of
an electron with momentum in the range d3p’ at p”:
_2n G* &y
" 3 Qn)°E E’
Finally, we must integrate Eq. (11.64) over all momenta p’ of the emitted
electron. For a muon at rest, i.e. in the rest frame of the muon, we have

[(pp")g* + 2(pa)(P'D)]. (11.64)

p=(m,0), dqo=m,—E, q=-p, (11.65)
and in this frame Eq. (11.64) becomes
2 G* . , ,
dr = 3 @ Ip'| dE" dQ'[(m?2 + m? — 2m,E"Ym,E
+ 2m,(m, — E"Y(m,E' — m?)] (11.66)

where we put d3p’ =|p|E'dE'dQ. If we neglect terms of order
m?/m2, Eq. (11.66) reduces to

_2n G?

=3 @2n)°®

m,E'* dE’ dQ (3m, — 4E"). (11.67)

Integrating Eq. (11.67) over all directions ' of the emitted electron and over
its complete range of energies 0 < E’ < m,, we obtain the total decay rate

2.5
_Gmu

=B, 6
19273 (11.68)
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Taking u~ — e ¥.v, as the only muon decay mode (the experimental
branching ratio is 98.6 per cent?), we obtain the muon life time

1 19273
Ol
u

(11.69)

Substituting the experimental values 7,=22x 107®s and m, =
105.7 MeV in Eq. (11.69) gives for the value of the Fermi coupling
constant

G =116 x 107°GeV~2=1.02 x 10™5/m2. (11.70a)
Substituting the value (11.70a) for G into Eq. (11.43) leads to
2 2
9w G Mw _
W~ () x4x1073 11.71
4n  4n2 <m,, ) ( )

for my =~ 80 GeV. This value is comparable to that of the fine structure
constant, e2/4n = 7.3 x 1073, so that lowest order of perturbation theory
should give a good description of weak interactions.

A much more precise value of G than Eq. (11.70a) can be obtained from the
most accurate current experimental value for the muon life time

7, = (2.19714 £ 0.00007) x 107 s. (11.72)

For this purpose one must retain the terms involving the electron mass m, in
the expression for the decay rate I [i.e. one must derive I from Eq. (11.66)
instead of from Eq. (11.67)], one must include the radiative corrections of
QED, and one must, of course, also allow for the 98.6 per cent branching ratio
of the 4~ — e v,.v, mode. In this way one finds the value

G = (1.16632 £ 0.00002) x 107° GeV~2 = 1.027 x 10~ 3/m2. (11.70b)

The muon life time only determines the coupling constant G. A thorough
/lest of the theory comes from comparing its predictions with detailed
experiments on: (i) the energy spectrum of the emitted electrons, (ii) the energy
spectrum and the angular distribution of the electrons emitted in the decay of
polarized muons, and (iii) the helicity of the electrons emitted from
unpolarized muons. Some of these experiments are sufficiently accurate that
one must again include radiative corrections in the theory. In all cases there is
good agreement between theory and experiment. For example, the mean
helicity of the electrons emitted in the decay of unpolarized muons is — 1.008
+ 0.057, in agreement with the theoretical predictions and with the
qualitative arguments we gave following Eq. (11.16).

* This and other experimental data quoted in this section are taken from Particle Data Group,
Review of Particle Properties, Phys. Lett. 111B (1982).

$For details of these calculations involving polarized electrons or polarized muons see
D. Bailin’s Weak Interactions, quoted in Section 11.1.
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Finally, we note that evidence for the universality of the leptonic
interaction (11.6)--(11.7) comes from the tauon decay

T e 4Vt v (11.73)

‘The tauon life time 7, is at once obtained from expression (11.69) for 7, by
replacing m, by m, and allowing for the fact that the branching ratio for the
process (11.73) is B =0.176 + 0.006 + 0.010. Using Eq. (11.38), it follows

that
19273 s
Te = B—(‘;E‘rg‘s— = BT,, <—rrn—n—‘i> . (1174)

Substituting for t,, B and m,/m, in Eq. (11.74) leads to the prediction
.= (2.8 +0.2) x 107135 in agreement with the experimental life time of
(3.20 £ 0.41 + 0.35) x 10713}

11.6.2 Neutrino scattering

Unlike the muon decay process, one would expect neutrino scattering
processes at sufficiently high energies to exhibit the effects of the intermediate
vector boson. We shall illustrate this for the process

Ve t+e o ve+pu” (11.75)

which is often called inverse muon decay. In lowest order of perturbation
theory, this process is represented by the Feynman graph in Fig. 11.8, which
also specifies the four-momenta of the particles. It is left as an exercise for the
reader to show that the corresponding Feynman amplitude is given by

=i 0 (27) fama — ]
=\ -2 (-1) iy [a(p'yy1 — ys)u(q)
x [a(q')y* (1 — ys)u(p)l, (11.76)

when terms of order (m,m,/m%) are dropped. The vector k in this equation is
the momentum of the intermediate W boson and is given by

k=p—q=p—q. (11.77)
The factor in curly brackets in the Feynman amplitude (11.76) leads to the
factor
2 2
My
{m%v — kz} (11.78)

in the differential scattering cross-section. For myp — o0, this factor becomes
unity, and the differential cross-section becomes identical with that of the
* These values for B and 1, are taken from a recent experiment by the Mark II group at

Stanford. See the paper by N. Reay in the Proceedings of the 1983 International Symposium,
cited for Eq. (11.8b).
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vulq) p(p"

e (p) velq')

Fig. 11.8. The process v, +e” — v, + pu~
(inverse muon decay).

contact interaction theory if we make the identification (11.43). For finite my,
the deviations from the latter theory are of order k?/m2,. With my, ~ 80 GeV,
it is not surprising that experiments at the highest available neutrino energies
are unable to detect such corrections, and we shall not consider the inverse
muon decay process further. We only remark that the IVB theory is in good
agreement with all experiments on this and similar processes, which in lowest-
order perturbation theory are described by the exchange of one W boson.

11.6.3 The leptonic decay of the W boson
Lastly, we consider the leptonic decay process
Wt 1t + v (11.79)

represented by the Feynman graph in Fig. 11.9. The derivation of the decay
rate for this process is left as an exercise for the reader and gives

gvmw mi \? my
- _ . 11.80
I n <1 mvzv) <1 + m3 ( )

For m} « m$, (which is certainly the case for the e, u and 1 leptons) this
reduces to

2
IwMw

I =
! 6n

(11.81)
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Vi

(t

Fig. 11.9. The leptonic decay modes of the W'
boson.

The life time 7 of the W boson is related to the total decay rate I', for all
decay channels. Apart from the three leptonic modes (11.79) for I = ¢, p, T,
there may be further leptons and the W will also possess hadronic decay
modes. Hence, I',,, > 3T and

1 2n
<

rtot g %Vmw

T

(11.82)

From Eqgs. (11.43) and (11.70), and taking mw ~ 80 GeV, we obtain the upper
bound 7 < 10”2*s. This is such an extremely short life time that it is not
possible to observe a free W boson directly. Instead, it has to be detected by
its decay products, as in the pp collider experiment referred to earlier.

11.7 DIFFICULTIES WITH THE IVB THEORY

In spite of its successes, the IVB theory presents serious difficulties. It cannot
describe such processes as

v, +e —ov,+e (11.83)
and
Vyt+e oV, +e, (11.84)

which are not forbidden by any conservation laws. With the interaction
(11.7), the teading contributions to the process (11.83) come from the
Feynman graphs in Fig. 11.10. This is in contrast to processes such as

Ve+ e — v, +e” (11.85)
and the inverse muon decay process

vote S v+ pu” (11.86)
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H H
Vu > > > Vi vu > > > Vi
w
w w
w
e~ — > > e~ e” > > > e~
Yo Ye

Fig. 11.10. The leading contributions to the process v, + e~ = v, + e~ as
given by the IVB theory. :

4
[

Ve

e > > Ve

Fig. 11.11. The leading contribution
to the process v, + e~ — v, + e, as
given by the IVB theory.

which in the lowest order involve the exchange of one W boson, as in Figs.
11.11 and 11.8. This difference is due to the fact that each term of the leptonic
currents, J, and J!, Egs. (11.6), always couples a neutral and a charged
lepton. For example, the term in the interaction (11.7) which annihilates a
muon-neutrino necessarily creates a u~ or destroys a u*. Hence the leading
contribution to the process (11.83) must involve the exchange of two W
bosons, as shown in Fig. 11.10.

We found earlier that the coupling constant gy is small. Hence one would
expect the cross-sections for two-boson-exchange processes, like Eq. (11.83),
to be small compared with those for one-boson-exchange processes, like Eq.
(11.85). Unfortunately, the loop integrals to which the Feynman graphs 11.10
give rise are divergent, and the IVB theory is not renormalizable, as we
shall discuss further in a moment. This means we simply do not know how to
calculate with it sensibly if loop integrals are involved. Hence IVB theory
represents a phenomenological theory only; it allows one to calculate those
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> v
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b 3
A 4

z0

e = > > e

Fig. 11.12. A one-boson-exchange

contribution to  the  process

v, +e > v,+e”, not contained
within the IVB theory.

processes which do not involve loop integrals in the lowest order of
perturbation theory.

On the other hand, the measured cross-sections for processes like v, — e
scattering, Eq. (11.83), are comparable to the cross-sections for processes like
v, — e scattering, Eq. (11.85). This suggests that the IVB interaction (11.7) is
not complete and that the leptonic interaction contains additional terms
which allow the v, — e scattering to occur as a one-boson-exchange process.
If we wish to retain lepton number conservation, since this is well established,
these extra terms will lead to Feynman diagrams like that in Fig. 11.12,
involving the exchange of a neutral vector boson Z° between an electron—
electron current and a neutrino—neutrino current. (Currents involving the
emission or absorption of a neutral vector boson are called neutral currents,
in contrast to the charged currents, J, and J{, which involve the emission or
absorption of a charged vector boson.) The existence of the Z° boson and the
presence of the neutral-current terms in the interaction are required by the
standard electro-weak theory, for this theory to be renormalizable. The
prediction of processes like v, — eand ¥, — e scattering, before they had been
observed, was one of the great early successes of this theory.

Recently, the Z° boson has been detected in the same pp collider
experiments in which the W boson was observed (see Section 11.2). The
Feynman graph for Z° boson production is shown in Fig. 11.13. In this
process, a quark (q) and an anti-quark (), produced in a pp collision,
combine to form a Z° boson which then decays into a charged lepton pair:
ete”, utu,.... (The corresponding graph for the W boson production
process was shown in Fig. 11.3.) Up to the present, a total of 14 such events
have been identified in two independent experiments by the UAland UA2 col-
laborations. Analysis of just four of their events by each group leads to the
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AN
®

Fig. 11.13. The production of the Z° boson in a pp collision and its
leptonic decay Z% —» e* +e”.

following values * for the mass of the Z° boson

my = (956 + 1.4 + 29) GeV (UAI)} (11.87a)

mz=(919 + 1.3 + 1.4) GeV (UA2){

(More accurate values should be obtained from the analysis of all 14 events in
due course.) These values should be compared with the prediction

—-22

of the standard electro—weak theory (see Section 14.1).
Finally, we return to the question of the renormalizability of the IVB
theory. We see from Eq. (11.30), i.e.

my = <93.8 +2'4> GeV, (11.87b)

(—gup + K k,;/mw)

Draplh, m) = k* — m3 + ie
W

(11.30)

that the W propagator behaves like a constant for large momenta k. Hence
the loop integrals in the amplitudes of the Feynman graphs 11.10 are

quadratically divergent,
A 4k
J d— ~ A?, (11.88)

where A is a high-energy cut-off parameter. More generally, in more
complicated higher-order graphs, each additional W propagator which forms
part of a loop will lead to a factor of the order A2/m#%, where the factor A”
follows purely from dimensional arguments. Hence, as we consider a given
process in higher orders of perturbation theory, new, progressively more

1 See the papers by B. Sadoulet (UA1) and by A. Clark (UA2) in the Proceedings of the 1983
International Symposium, cited for Eq. (11.8b).
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severe divergences arise. To cancel these, we would have to introduce
additional renormalization constants at each stage, ending up with infinitely
many such constants. Clearly, there is no way of determining these constants
or making any predictions from such a theory, i.. it is non-renormalizable.

As we saw in Chapter 9, the situation is quite different in QED, which
contains only three renormalization constants which can be absorbed into
the mass and the charge of the electron, and which is renormalizable. This
difference between QED and the IVB theory is reflected in the fact that in
QED the degree of divergence of a primitively divergent graph depends on
the external lines only and is independent of the number of vertices n [see Eq.
(9.112)]. For the IVB theory, on the other hand, the degree of divergence
increases with n (see Problem 11.4). The divergence difficulties of the IVB
theory stem from the term k*kf/m32, in the W propagator. This term is absent
from the photon propagator —ig*#/k?. Hence the latter acts as.a convergence
factor for large k in a loop integral with respect to k. In the case of the photon
propagator we were able to avoid a term in k%’ by exploiting gauge
invariance. The renormalizability of the theory of weak interactions is
similarly achieved by formulating it as a gauge theory.

PROBLEMS

11.1 Prove that for the muon decay process u~ — e~ + ¥, + v, the maximum
possible energy of the electron in the muon rest frame is

(m2 + m2)/2m,,.

11.2 For the leptonic process W* — [*v,, derive the decay rate (11.80).
11.3 Show that in the IVB theory the dimensionality K of the Feynman amplitude of
a Feynman graph is given by '

K=n+4-3f —2b,,

where f,(b.) is the number of external fermion (boson) lines of the graph, and n is
the number of its vertices. (The corresponding result (9.112) for QED is
independent of n.)

11.4 Show that the differential decay rate for a polarized muon is given by

1 G2
3@t

where (E, p) is the energy—inomentum four-vector of the emitted electron in the
rest-frame of the muon. 8 is the angle which p makes with the direction of the
muon spin, and the electron mass has been neglected, i.e. the above formula
applies only to high-energy electrons produced in the decay. The cos ¢ term in
the formula demonstrates the parity violation of the process.

11.5 Show that, in the centre-of-mass frame, the differential cross-section for the
inverse muon decay process

d*pm,[3m, — 4E + cos 6(m, — 4E)]

Vete o v+, (A)
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which results from the Fermi contact interaction (11.44), is given by
do G3E?
Q=
where all lepton masses have been neglected compared with the centre-of-mass
energy E of the incoming neutrino.
Show that for the related process
Vet+e —pu +v,
the corresponding differential cross-section is given by
ds _ G’E?
o~ 4n?
where 6 is the angle between the incoming neutrino and the outgoing muon.
For the second reaction, the cross-section vanishes in the forward direction
(0 = 0). Deduce this directly by considering the helicities of the leptons in the
process and the contact nature of the interaction. Show that the same line of

argument does not rule out forward scattering for the inverse muon decay
process (A).

(1 — cos 6)?




CHAPTER 12

A gauge theory of weak interactions

In this chapter we shall attempt to formulate a gauge theory of weak inter-
actions. We shall first of all illustrate the characteristic features of a gauge
theory for the simplest such theory, namely QED. For weak interactions, the
role of the electromagnetic current is taken by the weak Ieptonic currents J,
and J, Egs. (11.6), and the role of the photon is taken by the W* bosons. We
shall find that the requirement of gauge invariance leads to the neutral Ieptonic
current, mentioned at the end of the Iast chapter, and to a third, electrically
neutral, vector boson. At the same time, a unification of electromagnetic and
weak interactions is achieved in a natural way. The gauge invariance of the
theory developed in this chapter necessitates all Ieptons and vector bosons to
be massless. This difficulty is discussed at the end of this chapter, but it will
only be resolved in the next chapter.

In what follows, we confine ourselves to the extension of gauge theories to
weak interactions. The original extension was first made by Yang and Mills
in 1954 in the context of strong interactions, where it eventually led to the
current theory of strong interactions, quantum chromodynamics (QCD).}

*For a wider discussion of gauge theories, the reader is referred to L J. R. Aitchison, An
Informal Introduction to Gauge Field Theories, Cambridge University Press, Cambridge, 1982;
1. J. R. Aitchison and A. J. G. Hey, Gauge Theories in Particle Physics, A. Hilger, Bristol, 1982;
D. Bailin, Weak Interactions, 2nd edn, A. Hilger, Bristol, 1982; C. Itzykson and J. B. Zuber, Quan-
tum Field Theory, McGraw-Hill, New York, 1980; E. Leader and E. Predazzi, An Introduction to
Gauge Theories and the New Physics, Cambridge University Press, Cambridge, 1982; T. D. Lee,
Particle Physics and Introduction to Field Theory, Harcourt, New York, 1981; P. Ramond, Field
Theory: A Modern Primer, Benjamin/Cummins, New York, 1981; and J. C. Taylor, Gauge
Theories of Weak Interactions, Cambridge University Press, Cambridge, 1976.
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12.1 THE SIMPLEST GAUGE THEORY: QED

In Section 4.5 we introduced the electromagnetic interaction into the free-
fermion Lagrangian density

Lo = P(x)(iy*0, — mpp(x) (12.1)
through the minimal substitution
0, D,=1[0, +iqA,(x)] (4.64b)

where ¢ is the charge of the particle annihilated by the field y(x). We required
invariance of the resulting theory, i.e. of the Lagrangian density

& = §(x)(iy* D, — mY(x) = Lo — qP(x)y*Y(x)A.(x),
under gauge transformations of the electromagnetic field
A (x) > A (x) = A (x) + 0,f(x) (12.2a)

where f(x) is a real differentiable function. This invariance was ensured if,
coupled with the transformation (12.2a), the Dirac fields ¥(x) and ¥(x)
underwent the transformations

V(x) = W00 = Y(x) e-‘w’}_
Fx) - Px) = P 60

Egs. (12.2b) have the form of a local phase transformation. We shall refer to
the coupled transformation (12.2a) and (12.2b) as a gauge transformation and
to any theory which is invariant under such coupled transformations as a
gauge theory. QED is the simplest example of a gauge theory.

In the above discussion we started from the form of the electromagnetic
interaction. The invariance of the theory under the gauge transformations
(12.2a) of the electromagnetic potentials then required the Dirac fields ¥ and
¥ simultaneously to undergo the local phase transformation (12.2b). We can
try and reverse this argument and start from the invariance of the free
Lagrangian density %, under the global phase transformation

Y(x) = ¥'(x) = Y(x) C_i“}
P(x) = P(x) = P(x) e

when o is a real number. We know from the discussion following Eq. (2.40)
that this invariance ensures ‘current conservation’, i.e. the current

(12.2b)

(12.3)

s#(x) = qP ()Y P(x) (12.4)
satisfies 0,s*(x) = 0, so that the charge
Q=4 Jd3XW(X)'l'(X) (12.5)

is conserved.
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Invariance under the global phase transformation (12.3) allows us to
change the phase of the field by the same amount at each space—time point.
This appears unnecessarily restrictive in a local field theory. We shall therefore
demand invariance with respect to the more general local phase transforma-
tions (12.2b). Under these transformations, the free-field Lagrangian density
% becomes

Lo > Lo = Lo+ qh(x)y¥(x)0,f (x), (12.6)

i.e. Lo is not invariant. Invariance of the theory is then restored if we can aug-
ment %, by a term & such that the new Lagrangian density ¥ = %, + %,
is invariant. This can be achieved by associating with the ‘matter field’
Y(x) a ‘gauge field’ A,(x) which transforms according to the gauge
transformation (12.2a). The interaction between matter and gauge fields is
then specified by making the minimal substitution (4.64b) in the free-field
Lagrangian density %, i.. by replacing the ordinary derivative d,y(x) by the
‘covariant derivative’

D,(x) = [0, + iqA, () Y(x). (12.7)
%o thus goes over into

& = §(x)(iy"D, — mpp(x)
= % — YY) A (x) = Lo + L. (12.8)

Under the coupled gauge transformation (12.2a) and (12.2b), the covariant
derivative D,¥(x) undergoes the transformation

D, Y(x) - e ™D yY(x), (12.9)

i.€. it transforms in the same way as the field y(x) itself, Eq. (12.2b). Hence &
is invariant under gauge transformations, as required.

Tosummarize this approach: if one takes as the basic requirement invariance
with respect to local phase transformations of the matter field, one is led to
introduce a gauge field coupled to the matter field through the replacement of
the ordinary derivative 0,4 by the covariant derivative D,i.

None of these arguments can claim to derive the electromagnetic
interaction but they suggest a gauge-invariant form for it which may or may
not be confirmed by experiment. For electrodynamics where the interaction
is known from the classical limit, these arguments may appear superfluous.
However, we shall see that they have been extremely successful in suggesting
the form of the interaction in other situations where there is no classical limit
to guide us.

122 GLOBAL PHASE TRANSFORMATIONS AND CONSERVED
WEAK CURRENTS

We shall now apply the programme outlined at the end of the last section to
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formulate the theory of weak interactions as a gauge theory. As a first step we
must find a set of global phase transformations which leaves the free-lepton
Lagrangian density invariant, leading to conservation of the weak currents
Jo(x), Ji(x), Egs. (11.6).

To begin with, we shall assume that all leptons are massless. At the end of
the chapter we shall return to the problems to which non-vanishing lepton
masses give rise. The free-lepton Lagrangian density is then given by

Lo = [ (x) + §u, ()P, (x)] (12.10)
where, as in the following, summation over all different kinds of leptons is
understood: l = ¢, 4, ....

In Chapter 11, we found that the leptonic currents, and consequently the
leptonic interaction, involve only the left-handed lepton fields, Egs. (11.13)~
(11.16). We shall therefore write Eq. (12.10) in terms of left- and right-handed
fields. For any Dirac spinor y(x), these fields are defined by

YH(x) = Puy(x)
YR(x) = Prip(x)
and Eq. (12.10) becomes

Lo = iPTII(x) + P50 (x)
+ PRI + FLON()]. (1212)

We now combine the fields ; and y3, into a two-component field

} =31 FysW(x), (12.11)

_ (¥
Yi(x) = <n/1{“(x)> (12.13a)
and, correspondingly,
Pl = (I x), ¥r(x)). (12.13b)

In terms of these fields, Eq. (12.12) becomes

Lo = i[PLHOPPHX) + PFOPT) + PLOME)].  (12.14)

Although Eq. (12.12) is symmetric between left- and right-handed fields, we
have written Eq. (12.14) in a very unsymmetric way, ie. we have not
introduced two-component right-handed fields. We shall see that the left-—
right asymmetry of weak interactions can be described in terms of different
transformation properties of the left- and right-handed fields. For the two-
component left-handed fields, the possibility arises of two-dimensional
transformations which leave bilinear forms Wf(x)(...)¥¥(x) invariant. For
this purpose, we introduce the three 2 x 2 Hermitian matrices

01 0 —i 1 0
Ty = <1 0)5 Ty = <i 0)’ Ty = <0 _1>9 (12.15)
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which satisfy the commutation relations .
[T,', Tj] = 2i8ijk1k (1216)

where ¢;;, is the usual completely antisymmetric tensor and, as throughout,
summation over the repeated index k(=1, 2, 3) is implied. (The r-matrices are
just the usual Pauli spin matrices.) The operator

U(a) = exp (aj7;/2) (12.17)

is unitary for any three real numbers a = (a;, %5, a3), and the set of
transformations

Ph(x) - PF(x) = U@)¥H(x) = exp (io;7,/2) P} (x)
Pl(x) - PF(x) = PH)U (@) = PH(x) exp (—iasr;/2)

leaves the term iPF(x)@¥r(x) in %y, Eq. (12.14), invariant.

The operators U(a) are 2 x 2 unitary matrices with the special property
that det U(at) = + 1. They are therefore called SU(2) transformations.! The
transformations (12.18a) can be regarded as two-dimensional global phase
transformations, i.c. as a generalization of the one-dimensional global phase
transformations (12.3).

The SU(2) transformation properties of the two-component left-handed
lepton fields WE(x) are identical with those of the two-component spinors
which describe spin 4 particles in the non-relativistic Pauli theory of spin, and
with those of the two-component isospinors which describe the neutron and
the proton as different charge states of the nucleon. The two-component field
WL(x) is therefore called a weak isospinor. In addition to two-component
spinors, the Pauli spin theory also gives rise to one-component scalars (e.g.
singlet spin states), three-component vectors (€.g. triplet states), etc., and these
entities are characterized by the transformations induced in them by the basic
spinor transformations. For example, any quantity invariant under these
transformations is a scalar. All these concepts carry over to weak isospin,
leading to quantities being classified according to their transformation
properties under SU(2) transformations as weak isoscalars, weak isospinors,
and so on.

So far, we have considered the left-handed lepton fields. We shall now define
each right-handed lepton field to be a weak isoscalar, ie. to be invariant
under any SU(2) transformation:

VRGO = Y1 (x) = ¥ (%), 3 () = Y3 (x) = Y (x)
Pra) = PF 00 = PR, P00 - E ) = Jix)

* The set of all SU(2) transformations forms the SU(2) group. A group is called Abelian (non-
Abelian) if its elements do (do not) commute. The SU(2) group is non-Abelian, since the z-
matrices and hence the operators (12.17) are non-commuting. The terms ‘SU(2)’, ‘non-Abelian’
and some other nomenclature which we shall introduce derive from group theory, but no know-
ledge of group theory is required in what follows.

} (12.18a)

} . (12.18b)
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It follows at once that the SU(2) transformations (12.18a) and (12.18b) of the
lepton fields leave the free-lepton Lagrangian density %,, Eq. (12.14),
invariant.

From this invariance of %, the conservation of the leptonic currents J,(x)
and Jy(x), Egs. (11.6), follows. For infinitesimal a;, the transformations
(12.18a) reduce to

PHx) > PF(x) = (1 + inj1;/2)PE(x) }

Ph(x) > PH(x) = PLex)(1 — ioyz;/2) (12.19)

whereas Eqs. (12.18b) for the right-handed fields remain unchanged. An
argument analogous to that following Eq. (2.39) leads to the three conserved
currents

Jix) = $Pr0oy i), =123, (12.20)

which are called weak isospin currents. The corresponding conserved
quantities

¥ = Jd"‘xJ?(x) =1 Jd?’x\y}*(x)ri\y}(x), i=1,23, (12.21)

are called weak isospin charges.

The leptonic currents J%(x) and J*(x), Egs. (11.6), in terms of which the
IVB theory was formulated, can be written as linear combinations of the
conserved weak isospin currents J{(x) and J%(x). Using Eqs. (12.11) and
(12.15), one obtains

JHx) = 2[J5(x) — 1J5(0)] = Fi()y* (1 — ys)v(x)
JH(x) = 2[J1(x) + 1J5(x)] = ¥, ()y*(1 — ys)pu(x)

Most remarkably, the above development necessarily led to the conservation
of a third current, namely the weak isospin current

3(x) = Py 13 PH(x)
= PRy (x) — Fre)Y Y] (12.23)

The current J§(x) is called a neutral current since it couples either electrically
neutral leptons or, like the electromagnetic current

s*(x) = —edi(x)y"¥(x), (12.24)

electrically charged leptons. This is in contrast to the charged currents J*(x)
and J*'(x) which couple electrically neutral with electrically charged leptons.
Apart from a constant factor, the last term on the right-hand side of Eq.
(12.23) is a part of the electromagnetic current (12.24). We have here a first
indication that, in the theory we are developing, electromagnetic and weak
processes will be interconnected.

}. (12.22)
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The weak hypercharge current J$(x) is defined by

Hx) = s%(x)/e — J5(x)
= =3Py PHx) — RO YL(x). (12.25)
The corresponding charge
Y = d3JYx) (12.26)

is called the weak hypercharge.! We see from Eq. (12.25) that Y is related to
the electric charge Q and the weak isocharge I¥ by

Y=0Q/e—1IY. (12.27)
The conservation of the electric charge Q and of the weak isocharge IY
implies conservation of the weak hypercharge Y.

We next determine the weak isospin charge I} and the weak hypercharge
Y of the different leptons. From Eqs. (12.13a) and (12.15) we have

(1 O\ () [ ¥i(x)
¥ (x) = <0 _ 1)<¢,L(x)) - <—¢:L(X))'

It follows that the weak isospin charge I¥ has the value +4 for a left-handed
v; neutrino, and the value —3 for a left-handed I~ lepton. A more proper
derivation of these results is obtained by substituting the expansions (4.38) of
the Dirac-fields in Eq. (12.21). If |7, L) and |v;, L) are one-particle states
which respectively contain one left-handed [™ lepton and one left-handed v,
neutrino, one finds that

I, Ly = =37, L),  I¥w,L) = +3w, L),  (12.28a)

Since the right-handed lepton fields are isoscalars, it similarly follows that I}

has the value O for right-handed I~ leptons and for right-handed v; neutrinos,
ie.

"I, Ry=0, ¥, R>=0. (12.28b)

The values of the weak hypercharge Y for the different leptons follows from
Eqgs. (12.27) and (12.28):

Yll—9 L> = _%Il—9 L>9 Ylvb L> = __levb L>
YI',R)=—|I",R) (12.29)
Yivip R) =0

i.e. for the left-handed states of I and v; leptons, Y has the value —3; for the
right-handed states of I~ and v, leptons, it has the values —1 and O,
respectively.

! These names have their origin in the formal similarity which exists with corresponding
quantities and relations for the strong interactions.
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Above we deduced the conservation of weak hypercharge from the
conservation of Q and of I¥, using Eq. (12.27). The conservation of weak
hypercharge aiso follows directly from the invariance of the free-lepton
Lagrangian density (12.14) under the simultaneous transformations

Wi(x) > P'(x) = e7#2¥H(x)

Yi(x) = Yi'(x) = e PYR(x) (12.30a)
R(x) > YR (x) = YR (x)
and the corresponding transformations of the adjoint fields, i.e.
Pl(x) » PV(x) = Pl(x) €'/, etc., (12.30b)

where f is an arbitrary real number. We can write the transformation (12.30)
more concisely as

Y(x) - Y(x) =e®Y(x),  Px) > Px) = P(x)e Y, (1231)

where y/(x) denotes any one of the lepton fields ¥y, YT, Y5, and yf, and Yis
the weak hypercharge of the particle annihilated by the field y(x). These
transformations are similar in form to the global phase transformations (12.3)
of QED and, like the latter, are called U(1) phase transformations since
U = ¢'*Y isjust a one-dimensional unitary matrix, i.e. a complex number of unit
modulus. (The U(1) transformations of course also form a group.)

The line of reasoning we have used above can be inverted. We can start
from the invariance of the free-lepton Lagrangian density (12.14): (i) under
the global SU(2) transformations (12.18) leading to conservation of the weak
isospin charges IV, and (ii) under the global U(1) transformations (12.30),
leading to conservation of the weak hypercharge Y. The conservation of the
electric charge then follows from Eq. (12.27).

123 THE GAUGE-INVARIANT ELECTRO-WEAK INTERACTION

We next generalize the above SU(2) and U(1) transformations from global to
local phase transformations. The development will be very similar to that for
QED in Section 12.1. In order to retain invariance under local phase
transformations, we shall have to introduce gauge fields, and this will auto-
matically generate the interactions.

We shall start with the SU(2) transformations and replace the global trans-
formations (12.18) by the local phase transformations

Pi(x) - ¥r'(x) = exp [igTjo,(x)/2]¥1(x)

P (x) > Fr'(x) = Pr(x) exp [~igrjox)/2]

YR(x) = Y1 (x) = YR(x), W) = YRx) = ¥ (x)
PR > P = §ix), W) - ¥ (x) = Pi(x).

(12.32a)
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Here wy(x), j = 1, 2, 3, are three arbitrary real differentiable functions of x,
and g is a real constant which will later be identified with a coupling
constant.

Applying the transformations (12.32a) to the free-lepton Lagrangian
density (12.14), the differential operator @ in the spinor term will also act on
the functions w;(x) in the exponent. Hence Eq. (12.14) is not invariant under
this transformation but transforms according to

Lo—> Lo=Lo+0Ly= Lo — 39Pr(x)tido;(x)Pr(x). (12.33)

We shall obtain an invariant Lagrangian density if, analogously to the
replacement (12.7) in QED, we replace the ordinary derivatives 9*¥F(x) in
Eq. (12.14) by the covariant derivatives,

MPH(x) - D*Pr(x) = [0* + igr;Wh(x)/2]¥r(x), (12.34)

so that %, goes over into
Zo = i[PHOPPI(x) + PROPYT(x) + L0005 (0)].  (12.35)

In Eq. (12.34), we had to introduce three real gauge fields W*%(x), compared to
the one gauge field A*(x) of QED, as there are now three conserved
charges I} and as the gauge transformation (12.32a) now contains three
arbitrary functions w;(x).

For the modified Lagrangian density .2, to be invariant, the transforma-
tions (12.32a) of the lepton fields must be coupled to transformations of the
gauge fields,

WH(x) » WH(x) = WHx) + SWH(x),

such that the covariant derivatives D*WE(x) transform in the same way as the
fields W¥(x) themselves, i.e.

D*¥H(x) — exp [igr0(x)/2]¥5(x). (12.36)

For finite functions wx), the resulting transformation law for the gauge
fields W*%(x) is quite complicated. However, it suffices to consider the
transformations for infinitesimal functions wj(x). In the appendix to this
chapter (Section 12.6), we shall show that the required infinitesimal trans-
formations are given by

Wi(x) - W¥(x) = Wi(x) + dWH(x)
= WH(x) — 0*wi(x) — gepo(x)Wi(x) [small w;(x)].
(12.32b)

Before discussing the implications of the transformation laws (12.32), we
shall consider the global U(tl) transformations (12.31). The corresponding
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local phase transformations are

Y(x) = ¥'(x) = exp [ig Y (x) ¥ (x)
Y(x) = §'(x) = P(x) exp [—ig ¥f(x)]

where g’ is a real number which will be determined later, f(x) is an arbitrary
real differentiable function, and Y= —4 —1, 0 is the weak hypercharge
associated with the fields Wi(x), Y(x) and ¢ (x) respectively. The analogy
with QED is even closer in this case. One obtains a Lagrangian density
invariant under the local phase transformations (12.37a) if in %, Eq. (12.14),
one replaces the ordinary derivatives by covariant derivatives,

Y(x) = DMY(x) = [* + ig YBH(x) (), (12.38)

where ¢ is any one of the four lepton fields Y, ¢}, Y} and 3, and the real

v

gauge field B*(x), which has been introduced, transforms like

(12.37a)

B*(x) > B(x) = B*(x) — 8*f(x). (12.37b)

We have seen that making the replacement (12.34) in Eq. (12.14) yields a
Lagrangian density which is invariant under the SU(2) gauge transforma-
tions (12.32a) and (12.32b), while the replacement (12.38) yields a Lagran-
gian density invariant under the U(1) gauge transformations (12.37a) and
(12.37b). If we make both replacements (12.34) and (12.38) simultaneously in
Eq. (12.14), we obtain the leptonic Lagrangian density

Lr = [FHROPYHX) + FRODYRX) + TREOPYRX)]  (1239)
where
D"¥i(x) = [¢* + igT; WH(x)/2 — ig' B¥(x)/2]¥[(x) (12.40a)
D*yi(x) = [0* — ig’ BYx)IY{(x) (12.40b)
DY (x) = gy (x). (12.40c)

We now define the fields W#¥(x) to be invariant under U(1) gauge
transformations, and B*(x) to be invariant under SU(2) gauge transforma-
tions. It then follows that the Lagrangian density (12.39) is invariant under
both SU(2) and U(1) gauge transformations. Such a Lagrangian density is
said to be SU(2) x U(1) gauge-invariant.

We can write the Lagrangian density (12.39) in the form

Pt =%+ A (12.41)
where %, is the free-lepton Lagrangian density (12.14) and
L = —gJi(x)Wiu(x) — g'J¥(x)Bu(X) (1242)

represents the interaction of the weak isospin currents and the weak
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hypercharge current, Eqs. (12.20) and (12.25), with the gauge fields W;,(x)
and B,(x).

In order to interpret the interaction %, we rewrite Eq. (12.42). Using Egs.
(12.22), we write the weak isospin currents J4(x) and J%(x) in terms of the
charged leptonic currents J*(x) and J*'(x), and we introduce the non-
Hermitian gauge field
jitwuu)—n%An] (12.43)

and its adjoint W}(x), in place of W;,(x) and W,,(x). In this way, one obtains
for the first two terms of %4

Wu(x) =

—_9
22

In the remaining two terms of %, we write W3,(x) and B,(x) as linear
combinations of two different Hermitian fields 4,(x) and Z,(x), defined by

2
=9 3 HOWu) =55 MO0 + W1 (1244)

%MF%MMMHMWMM)} (12.45)

B,(x) = —sin 8w Z,(x) + cos OwA,(x)

The angle 8w, which specifies the mixture of Z, and A4, fields in W3, and B,,, is
known as the weak mixing angle (or the Weinberg angle), and we shall con-
sider its determination later. From Eqgs. (12.45) and

Jy(x) = s'(x)fe — J5(x), (12.25)
we obtain '

—gJ5(x)W3,(x) — g'J4(X)B,(x)
= -% s*(x)[ — sin OwZ (x) + cos OwA,(x)]

— J4(x){glcos OwZ,(x) + sin OwA,(x)]
—g'[—sin OwZ (x) + cos OwA,(x)]}. (12.46)
We now demand that the gauge field A,(x), defined by Eqgs. (12.45), is the
electromagnetic field and is coupled to electric charges in the usual way, i.e.
through the usual term —s*(x)A4,(x) in the interaction Lagrangian density.

This means that in Eq. (12.46) the coefficient of J4(x)A,(x) must vanish, and
that of s#(x)A4,(x) must be (—1), i.e. we require

gsin Oy = g’ cos Oy = e. (1247)
Substituting Eqs. (12.44) and (12.46) in Eq. (12.42), and eliminating g’ by
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means of Eq. (12.47), we obtain as final expression for the interaction
Lagrangian density

Py = —H(X)A,(x) ~ 23—2 LI W(x) + JH)Wh(x)]

g
cos Oy

[J4(x) — sin? Ows#(x)/e]Z (x). (12.48)

The SU(2) x U(1) gauge-invariant interaction (12.48), first introduced by
Glashow in 1961, is eminently satisfactory as a Lagrangian density describing
the electromagnetic and weak interactions of leptons. The first term, obtained
by imposing the conditions (12.47) on the coupling constants, is the familiar
interaction of QED. The second term is just the IVB interaction Lagrangian
density corresponding to Eq. (11.7), provided we set

g
=_— 2.
gw =3 2 (12.49)
Thus the quanta of the gauge field W(x) are just the W* vector bosons. The
third term in Eq. (12.48) represents a neutral current

J4(x) — sin? Ows#(x)/e
= 30,001 = ys (%) — )y [(1 — 4sin® By) — ysJYu(x)  (12.50)

coupled to a real vector field Z,(x). If we interpret the quanta of this field as
the electrically neutral vector bosons Z° of Section 11.7, then this term will
lead to neutral current processes of the type shown in Fig. 11.12. Such neutral
current processes have been observed subsequent to their theoretical
prediction. As will be discussed in Section 14.3, good agreement between
theory and experiment is obtained by taking

sin? Oy = 0.227 4+ 0.014, (12.51)

i.e. the last term in Eq. (12.50) is almost a pure axial current. This agreement
between theory and experiment is strong support for the unified theory of
electromagnetic and weak interactions. On the other hand, taking 8w = 0 in
Egs. (12.45) leads to a SU(2) gauge-invariant theory of weak interactions
alone, ic. weak and electromagnetic interactions are decoupled. Such a
theory is ruled out by experiment.

12..4 PROPERTIES OF THE GAUGE BOSONS

The Lagrangian density (12.41), which we have considered, describes the free
leptons and their interactions with the gauge fields. The complete Lagrangian
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density must also contain terms which describe these gauge bosons when no
leptons are present. These terms must also be SU(2) x U(1) gauge-invariant.
As for the leptons, we shall for the moment assume the gauge bosons to have
zero masses, and we shall return to the question of non-vanishing masses in
the next section.

For the B“(x) field, it is easy to construct suitable terms. The U(1) gauge
transformation law (12.37b) of this field has the same form as that of the
electromagnetic field A*(x), Eq. (12.2a). Hence in analogy to the electromag-
netic case, a U(1) gauge-invariant Lagrangian density for the B¥(x) field is
given by

—4B,(x)B*'(x), (12.52)

where
B*Y(x) = 0"B¥*(x) — 0*B*(x) (12.53)
is the analogue of the electromagnetic field tensor F**(x), Eq. (5.5). The SU(2)
gauge invariance of the expression (12.52) follows from that of the B*(x) field.

The situation is more complicated for the W¥#(x) fields. The expression
analogous to Eq. (12.52) is

—4Fun(X)F1(x) (12.54)
where
Fr(x) = 0" WH(x) — " WY(x). (12.55)
However, this expression is not invariant under the transformation (12.32b),
on account of the term
— geip(X) Wi(x)
in Eq. (12.32b). To restore invariance, additional interaction terms must

again be introduced. As is shown in the appendix to this chapter (Section
12.6), the expression obtained by replacing F¥*(x) by

G¥'(x) = F'(x) + geguWH(x)Wi(x) (12.56)
in Eq. (12.54), i.c. the expression
Lo = —1G,,(0)G(x), ©(1257)
is SU(2) gauge-invariant. The invariance of .#¢ under U(1) transformations
follows trivially from that of the W¥(x) fields.

Combiring expressions (12.52) and (12.57), and substituting Eq. (12.56),
we obtain the complete SU(2) x U(1) gauge-invariant Lagrangian density
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Fig. 12.1. Some examples of three-line and four-line vertices generated by the boson
self-interaction terms in Eq. (12.58).

for the gauge bosons
FB = — 1B, (x)B*(x) — 1G;n(x)G¥(x) (12.58a)
= —2B(x)B*(x) — 1F;,(x)F¥(x)
+ geiji Wiu(x) Wi (x)0" Wi(x)
— 2% pEum W (XY WUX) Wi(X) Won(X). (12.58b)

The first two terms in Eq. (12.58b) represent the Lagrangian density &% of
the free (i.e. non-interacting) gauge fields. In terms of the fields 4*(x), Z*(x)
and W*(x), &2 becomes

LB = —3Fn(M)F*(x) = $Fln(OF0) — $Z,u(0Z"(x), (12.59)

where F**(x) is the electromagnetic field tensor (5.5), Fiy(x) is the corre-
sponding tensor (11.21b) for the W*(x) field, and

ZM(x) = 0"Z%(x) — 8Z"(x) (12.60)

is similarly associated with the Z*(x) field. Eq. (12.59) is thus the free-field
Lagrangian density for mass zero, spin one y, W* and Z° bosons.

In contrast, the third and fourth terms in Eq. (12.58b) represent
interactions of the gauge bosons amongst themselves. In perturbation theory,
these terms generate three- or four-line vertices. Some examples of such
vertices are shown in Fig. 12.1. These boson self-interactions are one of the
most striking features of the theory. They arise because the W¥(x) fields,
which transmit the interactions between the weak isospin currents, them-
selves are weak isospin vectors, i.e. they carry weak isospin charge. This is in
contrast to QED where the electromagnetic interactions are transmitted by
the photons but the latter do not carry electric charge. Consequently, there are
no photon self-coupling terms in QED.
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125 LEPTON AND GAUGE BOSON MASSES

So far we have assumed that all leptons and gauge bosons are massless.
Except for the photon and possibly the neutrinos, this assumption is certainly
unrealistic.

To describe massive W* and Z° bosons, we can add the mass terms

mp Wi(x)WH(x) + tm2Z,(x)Z*(x) (12.61)

to the Lagrangian density (12.59). For the W* particles, one obtains in this
way the Lagrangian density (11.21a) of the IVB theory of weak interactions.
Adding such mass terms results in a Lagrangian density which is not
invariant under the transformations (12.32) and (12.37), i.e. it violates both
SU(2) and U(1) gauge invariance. It also reintroduces all the renormalization
problems associated with massive vector bosons, as discussed in Section 11.7.

We could similarly introduce non-zero lepton masses. For example, for the
electron one could add the mass term,

- melpe(x)'l’e(x) (12623)

to the Lagrangian density. Unfortunately, this term is again not
SU(2) x U(1) gauge invariant. This follows since the expression (12.62a) can
be written

—mPe()[Pr + PLIYo(x) = —me[Ye(xWe(x) + PE(xWe(x)], (12.62b)

and y® and Y® are isoscalars while YL and L are isospinors.

We thus arrive at the conclusion that, if we wish to preserve SU(2) x U(1)
gauge invariance, we must set the masses of the leptons and of the W< and Z°
bosons equal to zero. We could at this point simply add the required lepton
and boson mass terms, as outlined above, violating SU(2) x U(1) gauge
invariance. The resulting model is known as the Glashow model. In lowest-
order perturbation theory calculations, this model yields results which are in
good agreement with present experiments for appropriately chosen values of
sin By, my and mz. However, the Glashow model is not renormalizable. We
shall therefore insist on retaining the gauge invariance of the Lagrangian
density. In the next chapter, we shall learn how to introduce non-zero masses
by the mechanism of spontaneous symmetry breaking. In this way we shall
obtain a renormalizable theory which is in agreement with experiment and
which, for given sin 8y, predicts the gauge boson masses my and m;.

126 APPENDIX: TWO GAUGE TRANSFORMATION RESULTS

[n this appendix we shall derive two results which were only quoted earlier in
this chapter: (i) the transformation law (12.32b) of the W*#(x) fields, and
(ii) the SU(2) gauge invariance of the Lagrangian density of the W%(x)
fields, Eq. (12.57).
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The derivations will gain in clarity if we introduce the 2 x 2 matrices
w(x) = 1,w{x), WH(x) = t; W¥(x). (12.63)

For simplicity, we shall also in this appendix omit the argument x of all
quantities, ie. w = w(x), ¥F = WPH(x), etc.

It follows from Eq. (12.16) that the matrices (12.63) satisfy the commu-
tation relations

[(U, Wll] = 2i8ijkriwj W‘,: (1264)

Expressed in terms of the matrices (12.63), the covariant derivative (12.34)
takes the form

D¥¥} = [o* + igW*/2]¥r, (12.65)

and the local phase transformation (12.32a) of W} becomes, for infinitesimal
w’

Y - WY =[1 + igo/2]¥F  (small w). (12.66)

12.6.1 The transformation law (12.32b)

As we saw in Section 12.3, we require the gauge fields W* to undergo a
transformation

Wt — W¥ = W* + oW+ (12.67)

(where §W* = 1; SW*) such that the covariant derivative D*PT transforms in
the same way as the field W} itself, i.e.

DL S [1 + igw/2]D" P
= [1 + igw/2][0* + igW*/2]WPL. (12.68)

By applying the transformations (12.66) and (12.67) in Eq. (12.65), we
obtain the transformation

DFWE S [0 + igW*/2 +ig SWH21[1 + igw/2]¥F.  (12.69)

Comparing the right-hand sides of Egs. (12.68) and (12.69), neglecting
second-order terms, leads to

SW* = — 0 + Siglew, W*1. (12.70)

Substituting the commutation relations (12.64) and the definitions (12.63)
in Eq. (12.70), we at once obtain the transformation law

IWH(x) = — 0*wi(x) — gerpwi(x) Wi(x), (12.71)
quoted in Eq. (12.32b).
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12.6.2 The SU(2) gauge invariance of Eq. (12.57)

We shall now show that Eq. (12.57), i.e. the Lagrangian density of the W¥(x)
fields

L= —3GGP, (12.72)
is invariant under SU(2) transformations. It will be convenient to define
G* = 1,GY (12.73)
and, using
Tr (tit;) = 26, (12.74)
to write Zg as
Lo = —§Tr(G,,G"). (12.75)

In order to prove the invariance of £, we shall first derive the transforma-
tion properties of G**. It follows from Eq. (12.16) that

2iri8ijkW‘j‘WZ = [Wll, Wv] (1276)

Substituting Eqs. (12.55) and (12.56) in Eq. (12.73) and using Eq. (12.76), we
obtain

G* = &W* — W™ — liglw*, W*]. (12.77)

Under a SU(2) transformation, W* experiences a change é W* which is
given by Eq. (12.70). Consequently G** will change by

OGH = g (SW*) — o*(SW™) — Liglow*, W] — Liglw*, sW™].
(12.78)
Substituting Eq. (12.70) in Eq. (12.78) we obtain, after some simplification,
3G* = liglw, O*W* — *W"]
+ 19° [0, W*], W] + 3g* ([ W, @], W*]. (12.79)
By means of the Jacobi identity
([4, B], C] + [[B, C], 4] + [[C, 4], B] = 0,
we can rewrite Eq. (12.79) as
5G** = tiglw, O W* — * W] — Sg*[[W*, W], 0].
On account of Eq. (12.77), the last equation reduces to
3G* = figlw, G**]. (12.80)
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This change §G*” induces a change in £ which, from Eq. (12.75), is given
by
8% = —4 Tr (6G,,G* + G,, 5G*)
= —ig Tr {[w, G,,]G** + G, [w, G*]}
= —15ig Tr [0, G,,G**] =0, (12.81)

where the last step follows from the identity Tr[A4, B] = 0. Eq. (12.81)
establishes the SU(2) invariance of Zg.



CHAPTER 13

Spontaneous symmetry breaking

In the previous chapter, a gauge-invariant and renormalizable unified theory
of weak and electromagnetic interactions was obtained. However, all leptons
and gauge bosons had to have zero mass. In reality, only photons and
perhaps neutrinos are massless, but the charged leptons and the W* and Z°
bosons have non-zero masses. We have seen that the ad hoc addition of mass
terms to the Lagrangian density spoils the gauge invariance and the
renormalizability of the theory. In order to obtain a renormalizable theory, it
is essential to introduce the masses by a mechanism which retains the gauge
invariance of the Lagrangian density. In this chapter we shall develop a quite
remarkable such mechanism, that of spontaneous symmetry breaking.

As in the last chapter, we shall proceed from global to local phase
invariance, i.e. to gauge invariance. In section 13.1, we shall introduce the idea
of spontaneous symmetry breaking and shall consider the simplest field-
theoretic example of it: the Goldstone model which is a field theory invariant
under global U(1) phase transformations. The Goldstone model necessarily
leads to zero-mass bosons (other than photons) which are not observed in
nature. This undesirable feature is absent when applying spontaneous sym-
metry breaking to a theory which is invariant under local phase transforma-
tions, i.. to a gauge theory. In Section 13.2, this will be demonstrated for a
field theory invariant under U(1) gauge transformations (the Higgs model). It
will then be easy (in Section 13.3) to generalize these results for the SU(2) x
U(1) gauge-invariant electro-weak theory of the previous chapter. In this way,
we shall obtain a Lagrangian density which is gauge-invariant, renormaliz-
able, and contains mass terms for leptons and for the W* and Z° bosons,
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while the photon remains massless. The resulting theory is known as the
standard electro—weak theory. It was first formulated in this way, indepen-
dently, by Weinberg in 1967 and by Salam in 1968. Its interpretation and
applications will form the topic of the last chapter of this book.

131 THE GOLDSTONE MODEL

In order to explain the idea of spontaneous symmetry breaking, we consider a
system whose Lagrangian L possesses a particular symmetry, ie. it is
invariant under the corresponding symmetry transformations.* (For example,
L might be spherically symmetric, i.. invariant under spatial rotations.) In
classifying the energy levels of this system, essentially two situations can
occur. Firstly, if a given energy level is non-degenerate, the corresponding
energy eigenstate is unique and invariant under the symmetry transformations
of L. Secondly, the energy level may be degenerate and the corresponding
eigenstates are not invariant but transform linearly amongst themselves
under the symmetry transformations of L. In particular, consider the lowest
energy level of the system. If it is non-degenerate, the state of lowest energy of
the system (its ground state) is unique and possesses the symmetries of L. In
the second case, of degeneracy, there is no unique eigenstate to represent the
ground state. If we arbitrarily select one of the degenerate states as the
ground state, then the ground state no longer shares the symmetries of L.
This way of obtaining an asymmetric ground state is known as spontaneous
symmetry breaking. The asymmetry is not due to adding a non-invariant
asymmetric term to L but to the arbitrary choice of one of the degenerate
states.

Ferromagnetism represents a familiar example of spontaneous symmetry
breaking. In a ferromagnetic material, the forces which couple the electronic
spins and hence the Hamiltonian of the system are rotationally invariant.
However, in the ground state the spins are aligned in some definite direction
resulting in a non-zero magnetization M. The orientation of M is arbitrary
and we are clearly dealing with a case of degeneracy. M could equally well
point in any other direction and all properties of the system, other than the
direction of M, would remain unchanged. An important feature of this
asymmetric ground state is that excited states obtained from it by small
perturbations also display this asymmetry.

In field theory, the state of lowest energy is the vacuum. Spontaneous
symmetry breaking is only relevant to field theory if the vacuum state is non-
unique. This very bold and startling idea was first suggested by Nambu and
his co-workers. It implies that some quantity in the vacuum is non-vanishing,

¥ Instead of the symmetries of L, we could talk of those of the Hamiltonian or of the equations
of motion or, in the case of a field theory, of the Lagrangian density.
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is not invariant under the symmetry transformations of the system, and can
therefore be used to characterize a particular vacuum state as the ground
state. In the following we shall assume this quantity to be the vacuum ex-
pectation value of a quantized field. If we require the vacuum states to be
invariant under Lorentz transformations and under translations, then this
field must be a scalar field, ¢(x), and its vacuum expectation value must be
constant:

{0lp(x)|0> = ¢ #0. (13.1)

In contrast, the vacuum expectation value of any spinor field ¥(x) or any
vector field V#(x) must vanish:

Oly(x)I0> =0,  <O|V*(x)I0) =0. (13.2)

The simplest example of a field theory exhibiting spontaneous symmetry
breaking is the Goldstone model. Its Lagrangian density is

L) = [P N0 — W = A0l (133)
with
$() = % (6100 +ids] (13.4)

a complex scalar field, and u? and A arbitrary real parameters. To begin with,
we shall consider a classical field theory, ie. ¢(x) is a classical and not a
quantized field, and u is not to be interpreted as a particle mass.

The Lagrangian density (13.3) is invariant under the global U(1) phase
transformations

B(x) > $'(x) = p(x) €%, P*(x) > ¢*'(x) = p*(x) e7™. (13.5)

We shall see that this symmetry is spontancously broken in this model.
The Hamiltonian density of this theory follows from Eq. (13.3) and the
general relations (2.22) and (2.25), and is

H(x) = [3°¢*(x)][0od(X)] + [V*(x)]- [Vo(x)] + ¥(¢) (13.6)
where
V(@) = 12 1d(x)1> + Ad(x)|* (13.7)

is the potential energy density of the field. For the energy of the field to be
bounded from below, we require 4 > 0. The first two terms in Eq. (13.6) are
positive definite and vanish for constant ¢(x). It follows that the minimum
value of #(x), and hence of the total energy of the field, corresponds to that
constant value of ¢(x) which minimizes ¥"(¢). Two different situations occur,
depending on the sign of u?.

(i) u® > 0. In this case, the two terms in ¥ (¢) are also positive definite.
In Fig. 13.1(a) we sketch the corresponding potential energy surface ¥7(¢) as



282 Spontaneous symmetry breaking Chap. 13 ’

(0);1.2>O (b)u?<0

circle of minimum V()
¢2 (x) ¢2(X)

Fig. 13.1. The potential energy density ¥'(¢) = p?lop(x)|*> + A@(x)|*, Eq. (13.7), for
4> 0. In case (b), our choice (¢,, ¢,) = (v, 0) for the vacuum ground state corres-
ponds to the point labelled P on the circle of minimum ¥7(¢).

a function of ¢,(x) and ¢,(x). ¥"(¢) has an absolute minimum for the unique
value ¢(x) = 0, i.e. spontaneous symmetry breaking cannot occur. This is the
situation with which we are familiar. Omitting the quartic term A|¢(x)|%, the
above expressions for £(x) and #°(x) are those of the free complex Klein-
Gordon field. Classically, they give rise to normal modes of oscillation about
the stable equilibrium position ¢(x) = 0. On quantization, they give rise to
charged spin 0 particles of mass u (see Section 3.2). The ground state, i.e. the
vacuum state, is unique and {0|¢(x)|0)> = 0. We can think of Eqs. (13.3),
(13.6) and (13.7) as expansions in powers of ¢(x) and ¢*(x) about the stable
equilibrium configuration ¢(x) = 0 and, in our approach, treat i|@(x){* by
perturbation theory. In the quantized theory, this term represents a self-
interaction of the particles.

(i) u? < 0. The potential energy surface for this case is shown in Fig.
13.1(b). ¥°(¢) possesses a local maximum at ¢(x) = 0 and a whole circle of
absolute minima at

2

$(9) = go = (;’j

1/2
) e, 0<0<2nm, (13.8)
where the phase angle 8 defines a direction in the complex ¢-plane. We see
that the state of lowest energy, the vacuum state, is not unique in this case.
This arbitrariness in the direction 8 is analogous to that in the direction of the
magnetization M of a ferromagnet. Analogously to the latter case, spon-
taneous symmetry breaking will occur if we choose one particular direction 6
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to represent the vacuum ground state. Because of the invariance of the
Lagrangian density (13.3) under the global phase transformations (13.5), the
value of 8 chosen is not significant and we shall take § = 0 so that

—u 1/2 1
¢o=<7> =7-2~v (>0) (13.9)

is purely real.
We now introduce two real fields o(x) and n(x) through the equation

$(x) = 715 [0+ o(x) + in(o)]. (13.10)

o(x) and n(x) measure the deviations of the field ¢(x) from the equilibrium
ground state configuration ¢(x) = ¢. In terms of these fields, the Lagran-
gian density (13.3) becomes

Z(x) = $[0*a(x)1[0,0(x)] — 324v*)o*(x)
+ 3[0*n(x)1[0un(x)]
— Ava(x)[o?(x) + n*(x)] — §Alo?(x) + n*(x))*  (13.11)

where we have omitted a constant term which is of no consequence.

Egs. (13.3) and (13.11) are the same Lagrangian density expressed in terms
of different variables. Thus they are entirely equivalent and must lead to the
same physical results. This equivalence only holds for exact solutions of the
theory. We shall be using perturbation theory, and for approximate solutions
the picture is very different. For u?> < 0, we cannot proceed as we did for
u? >0, ie. by treating the quartic term A|¢(x)[* in Eqgs. (13.3), (13.6) and
(13.7) as a perturbation of the other terms which are bilinear in ¢(x) and
¢*(x). For u* < 0, ¢(x) = 0is an unstable equilibrium configuration, and one
cannot carry out perturbation calculations about an unstable solution. That
this procedure leads to nonsense for u? < 0 shows up very clearly in the quan-
tized theory where the unperturbed system corresponds to particles of imagi-
nary mass, and no finite order of perturbation theory can put this right.

In contrast, Eq. (13.11) suggests a different quantization procedure. We
shall now treat the terms which are quadratic in o(x) and 5(x), i.e. the first
three terms in Eq. (13.11), as the free Lagrangian density

Zo(x) = H*a(x)][0,0(x)] — $24v*)a?(x)
+ 30" n()][0un(x)] (13.12)
and the remaining terms, which are cubic and quartic in ¢(x) and 5(x), as
interactions. The fields ¢(x) and #7(x) measure the deviations from the stable

equilibrium configuration ¢(x) = ¢,, and one would expect to be able to treat
the interaction terms by perturbation theory about this stable solution.
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The Lagrangian density (13.12) contains no terms which couple o(x) and
n(x), i.e. the fields o(x) and n(x) are normal coordinates of Eq. (13.12). Com-
paring Egs. (13.12) and (3.5), we see that o(x) and 5(x) are real Klein—
Gordon fields. On quantization, both fields lead to neutral spin 0 particles:
the o boson with the (real positive) mass ,/(24v%), and the # boson which has
zero mass since there is no term in n%(x) in Eq. (13.12). Since, by definition,
there are no particles present in the vacuum, it follows from Eqgs. (13.9) and
(13.10) that

{0]p(x)[0) = ¢o. (13.13)

This is the condition for spontaneous symmetry breaking in the quantized
theory, analogous to Eqs. (13.8) and (13.9) in the classical theory.

The origin of the above mass spectrum can be understood from Fig. 13.1(b)
by considering small displacements o(x) and n(x) from the equilibrium
configuration ¢(x) = ¢o. a(x) represents a displacement in the radial plane
¢2(x) =0 in which the potential energy density ¥7(¢) increases quad-
ratically with o(x). On the other hand, n(x) represents a displacement
along the valley of minimum potential energy where ¥"(¢) is constant, so that
the corresponding quantum excitations—the # bosons—are massless. Thus
the zero mass of the n bosons is a consequence of the degeneracy of the
vacuum. Such zero-mass bosons frequently occur in theories with spon-
taneous symmetry breaking and they are known as Goldstone bosons.

No Goldstone bosons are observed in nature. It is therefore of particular
interest that gauge theories with spontaneous symmetry breaking do not
generate Goldstone bosons. In the next section we shall demonstrate this fora
simple model, before turning to the realistic SU(2) x U(1) gauge theory of
the previous chapter.

132 THE HIGGS MODEL

The Goldstone model is easily generalized to be invariant under U(1) gauge
transformations. As in the last chapter, we introduce a gauge field A4,(x),
replace the ordinary derivatives in the Goldstone Lagrangian density (13.3)
by the covariant derivatives

D,¢(x) = [3, + iqA,(x)]¢(x)
and add the Lagrangian density of the free gauge field
—1F (x)F*(x) (13.14)
where, as usual,

Fu(x) = 5‘,Au(x) - auAv(x)-
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In this way we obtain the Lagrangian density

Z(x) = [D*$()T*[Dud(¥)] — plp(x)|* — Ap(x)|*
—4F (X)F™(x) (13.15)

which defines the Higgs model. Eq. (13.15) is invariant under the U(1) gauge
transformations

P(x) = ¢'(x) = p(x) e /@
P*(x) > P¥(x) = P*(x) eV . (13.16)
A (x) > A(x) = A (x) + 8, (x)

The further analysis parallels that for the Goldstone model. We again start
from a classical theory. Taking 4 > 0, two situations arise. For u*> > 0, the
state of lowest energy corresponds to both ¢(x) and A ,(x) vanishing, so that
spontaneous symmetry breaking cannot occur.

For u? <0, the vacuum state is not unique, leading to spontaneous
symmetry breaking. To ensure Lorentz invariance, the vector field 4,(x) must
vanish for the vacuum, but we again obtain a circle of minimum #(x)
corresponding to ¢(x) taking on the values ¢, given by Eq. (13.8). As for the
Goldstone model, we choose the real value (13.9) for ¢, and define the real
fields a(x) and 5(x) by Eq. (13.10). In terms of these fields, the Lagrangian
density (13.15) becomes

£ (x) = 3[0*0(x)][8,0(x)] — }(24v*)0*(x)
— ZF () F*(x) + 3(qv)*A4,(x) 4*(x)
+ 3[n(x)][0.n(x)]
+ qvA*(x) 0,n(x) + ‘interaction terms’ (13.17)

where the ‘interaction terms’, which we have not given explicitly, are cubic
and quartic in the fields and where an insignificant constant term has been
discarded.

The direct interpretation of Eq. (13.17) leads to difficulties. The first line of
this equation describes a real Klein—Gordon field which on quantization
gives uncharged spin 0 bosons with mass \/ (24v?). However, the product term
A*(x) O,n(x) shows that A*(x) and n(x) are not independent normal
coordinates, and one cannot conclude that the second and third lines of Eq.
(13.17) describe massive vector bosons and massless scalar bosons respect-
ively.} This difficulty also shows up if we count degrees of freedom for the
Lagrangian densities (13.15) and (13.17). Eq. (13.15) has four degrees of

*We do not include this term as a part of the interaction, to be treated in perturbation
theory, since it is of the same (second) order in the fields as the first five terms in Eq. (13.17).
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freedom: two from the complex scalar field ¢(x), and two from the real
massless vector field A,(x) (i.c. for massless photons there are only two
independent polarization states, the third is eliminated by gauge invariance).
In Eq. (13.17), the real scalar fields o(x) and #(x) each represent one degree
and the real massive vector field 4,(x) contributes three degrees (correspond-
ing to three independent polarization states), i.e. the transformed Lagrangian
density (13.17) appears to have five degrees of freedom. Of course, a change of
variables cannot alter the number of degrees of freedom of a system. We must
conclude that the Lagrangian density (13.17) contains an unphysical field
which does not represent real particles and which can be eliminated.

The scalar field #(x) can be eliminated from Eq. (13.17). For any complex
field ¢(x), a gauge transformation of the form (13.16) can be found which
transforms ¢(x) into a real field of the form

P(x) = 715 v + o(x)]. (13.18)

The gauge in which the transformed field has this form is called the unitary
gauge. (We shall continue to label the transformed field ¢(x) and not ¢'(x),
etc.) Substituting Eq. (13.18) into Eq. (13.15) gives

L(x) = Lo(x) + Li(x) (13.19a)
where we have separated the quadratic terms
Lo(x) = $[0*0(x)1[3,0(x)] — $220?)0*(x)
—4F()F*(x) + Hg)*4,(x)A¥(x) (13.19b)
from the higher-order interaction terms
Li(x) = —Avad(x) — FAo*(x)
+ 142 A, (x)A*(x)[2v0(x) + o2(x)]. (13.19¢)

Zo(x) contains no terms which couple o(x) and A4,(x). Hence, treating
Zi(x) in perturbation theory, we can interpret Zo(x) as the free-field
Lagrangian density of a real Klein—-Gordon field o(x) and a real massive
vector field A4,(x). On quantizing #Lo(x), o(x) gives rise to neutral scalar
bosons of mass ,/(24v?), and A,(x) to neutral vector bosons of mass |qv).

This is a remarkable result! Having started from the Lagrangian density
(13.15) for a complex scalar field and a massless real vector field, we have
ended up with the Lagrangian density (13.19) for a real scalar field and a
massive real vector field. The number of degrees of freedom is four in both
cases. Of the two degrees of freedom of the complex field ¢(x), one has been
taken up by the vector field 4,(x) which has become massive in the process;
the other shows up as the real field o(x). This phenomenon by which a vector
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boson acquires mass without destroying the gauge invariance of the
Lagrangian density is known as the Higgs mechanism, and the massive spin 0
boson associated with the field o(x) is called a Higgs boson or a Higgs scalar.
The Higgs mechanism does not generate Goldstone bosons, in contrast to the
spontaneous symmetry breaking of the global phase invariance of the
Goldstone model. In essence, the field n(x) in Eq. (13.17), which in the
Goldstone model was associated with the massless Goldstone bosons, has
been eliminated by gauge invariance, and the degree of freedom of 5(x) has
been transferred to the vector field A,(x).

The Higgs mechanism also works for non-Abelian gauge theories. In the
next section we shall apply it to the SU(2) x U(1) gauge theory of Chapter 12
and this will lead directly to the standard electro—weak theory. First, how-
ever, we comment briefly on the renormalizability of such theories.

Unlike the IVB theory or the Glashow model of weak interactions,
gauge theories have the great merit of being renormalizable, allowing
meaningful calculations to be made in higher orders of perturbation theory.
The proof of renormalizability has been given by ‘t Hooft, Veltman and
others. Unfortunately, it is very complicated. We shall content ourselves with
briefly indicating the underlying ideas, using the Higgs model for
illustration.}

The second line of Eq. (13.19b) is identical with the Lagrangian density of
a massive neutral vector boson field and leads to the propagator

i(—g* + k*kPm?)

iDE(k, m) = k2 — m? +ie

(13.20)

where m = |qv|. We met this propagator in the IVB theory [see Eq. (11.30)],
and it was suggested in Section 11.7 that the term k*k?/m? in this propagator
makes the IVB theory non-renormalizable. However, we saw in Section 9.8
that this kind of dimensional argument (i.e. counting powers of momenta in
loop integrals) predicts the maximum possible degree of divergence. For
gauge theories with spontaneously broken symmetry, the actual divergences
are less severe and the theori¢s are renormalizable. This could be due to the
propagator being coupled to exactly conserved currents or to the exact
cancellation of divergences arising from different Feynman graphs of the
same order.

The renormalizability of the Higgs model is difficult to prove from the
Lagrangian density (13.19) which employs the unitary gauge. Instead,
‘t Hooft proceeds in a way reminiscent of QED. There we replaced the

! The interested reader will find proper treatments in E. S. Abers and B. W. Lee, Gauge
Theories, Physics Reports, 9C, No. 1 (1973), and J. C. Taylor, Gauge Theories and Weak
Interactions, Cambridge University Press, Cambridge, 1976.
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gauge-invariant Lagrangian density

F = —4F,(x)F*(x) (13.21)
by
L = ~4F,(OF*(x) — H3,4(0)]? (13.22)
which is equivalent to Eq. (13.21) provided we work in a Lorentz gauge, i.c.
0,4%(x) = 0.} (13.23)
In the present case, ‘t Hooft imposes the gauge condition
0,A¥(x) — mn(x) =0 (13.24)

on the fields, where m = |quv| and n(x) is defined by Eq. (13.10). ‘t Hooft shows
that, if condition (13.24) holds, one may add the term

—3{0,4%(x) — mn(x)]? (13.25)

to the Lagrangian density (13.17), i.e. the modified Lagrangian density and
Eq. (13.17) leads to the same predictions for observable quantities.! Adding
the ‘gauge-fixing’ term (13.25) to Eq. (13.17) gives the modified Lagrangian
density

Z(x) = [0*0(x)1[0,0(x)] — 3(24v*)o*(x)
— FF W )F(x) + dm* A, (x)4*(x) — 3[0,4*(x)T?
+ 300" n()1[3m(x)] — sm*n*(x)
+ ‘interaction terms’ (13.26)

where m = |qu|, as before, and we have again omitted an irrelevant four-
divergence m d,[ A*(x)n(x)].

Eq. (13.26) no longer contains the troublesome bilinear term A*(x) J,1(x)
which was present in Eq. (13.17). Hence we can, in perturbation theory, treat
o(x), n(x) and A4,(x) as three independent free fields which may be quantized
in the usual way. We see from the first and third lines of Eq. (13.26) that o(x)
and n(x) are real Klein-Gordon fields which on quantization give the usual
equations of motion and propagators for such fields. The second line of Eq.
(13.26) differs from the Lagrangian density of a vector field in the unitary
gauge by the term —3[d,4%(x)]% From Eq. (13.26) one obtains

(O + mHA*x) =0 (13.27)

{In Section 5.1 we replaced Eq. (13.21) by the Lagrangian density (5.10) and not by Eq.
(13.22). However, Egs. (5.10) and (13.22) are equivalent since they differ by a four-divergence
only.

$ Eq. (13.24) represents a particular choice of gauge. ‘t Hooft, more generally, defined a whole
class of gauges by conditions similar to Eq. (13.24). These are known as ‘t Hooft gauges.
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as the equation of motion of 4*(x). Eq. (13.27) is like the Klein—-Gordon
equation for a scalar field. When quantized, it leads to the propagator*

_ig*B
iDE(k, m) = - 9 (13.28)

—m?+ie

The troublesome term k*k#/m? which occurred in the vector propagator
(13.20) is absent from Eq. (13.28). For large k2, the propagator (13.28)
behaves like 1/k?, just like the photon propagator, and acts as a convergence
factor. Dimensional arguments, like those used in Section 9.8, suggest that,
like QED, the Higgs model is renormalizable. This is confirmed by the
detailed analysis.

Working in a ‘t Hooft gauge reintroduces the n(x) field which had been
eliminated in the unitary gauge. There exist no real particles corresponding to
the quantized #n(x) field although the Feynman propagator for this field can
be interpreted in terms of the exchange of virtual scalar bosons. The
properties of these ‘ghost particles’, as they are called, are analogous to those
of the longitudinal and scalar photons in QED, which also do not exist as real
free particles but contribute as virtual intermediate quanta to the photon
propagator. The detailed properties of the n(x) field are quite complicated
and, of course, gauge-dependent. However, all observable quantities are
gauge-invariant. This situation is again quite analogous to that in QED.

13.3 THE STANDARD ELECTRO-WEAK THEORY

In the last chapter we developed a unified model of electromagnetic and
weak interactions of massless leptons and massless gauge bosons (W*, Z°
bosons and photons). The Lagrangian density of this model is

L =S+ ¥B, (13.29)

where £ is the leptonic Lagrangian density (12.39) and #® is the gauge-
boson Lagrangian density (12.58). The Lagrangian density (13.29) is exactly
invariant under the SU(2) x U(1) gauge transformations (12.32a), (12.32b)
and (12.37a), (12.37b). We now apply the Higgs mechanism to this model to
generate non-vanishing masses for the W* and Z° bosons, and we shall see
how this also enables one to introduce lepton masses. In this way we shall
finally arrive at the standard electro-weak theory of Weinberg and Salam.
The necessary formalism is an immediate extension of that of the Higgs
model. To break the gauge invariance spontaneously, we must again
introduce a Higgs field, i.e. a scalar field with non-vanishing vacuum
expectation value which is not invariant under the gauge transformations.

* An explicit derivation of Eq. (13.28) is given in C. Itzykson and J. B. Zuber, Quantum Field
Theory, McGraw-Hill, New York, 1980, Section 3-2-3.
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Since we now want to break the SU(2) symmetry, we must introduce not a
single such field but a field with several components and non-zero isospin.
The simplest possibility is a weak isospin doublet

Palx) )

P(x) = < (13.30)

Pp(x)
where ¢,(x) and ¢,(x) are scalar fields under Lorentz transformations.

The transformation laws of ®(x) under SU(2) x U(1) gauge transforma-
tions are, of course, the same as those of the isospin doublet W}(x). The
latter were given in Eqgs. (12.32a) and (12.37a). Analogously, ®(x) transforms
under SU(2) transformations according to

O(x) —» O'(x) = exp [igr;w;(x)/2]D(x) , (1331)
D'(x) » " (x) = O'(x) exp [ —igr w;(x)/2] ’
and under U(1) weak hypercharge transformations according to
D(x) » D'(x) = exp [ig' Y (x)]P(x) (1332)
Ol(x) > dY(x) = O (x) exp [—ig' Y[ (x)] '

where Yis the weak hypercharge of the field ®(x). We shall determineits value
shortly. [The corresponding global phase transformations are obtained from
Eqs. (13.31) and (13.32) through the replacements gw;(x) = a;, g'f(x) = B,
where «; and B are real constants; compare Eqgs. (12.18a) and (12.31).]

We now want to generalize the Lagrangian density (13.29) to include the
Higgs field ®(x) and its interactions with the gauge-boson fields, and to
continue to be SU(2) x U(1) gauge-invariant. The two terms in Eq. (13.29)
already possess this invariance property. A generalization which obviously
shares this property is

F =L+ B+ FH (13.33)
where
ZLH(x) = [D*O(X)]'[D,D(x)] — 2@ (x)(x) — A[D'(x)D(x)]>. (13.34)
Here the covariant derivative D*®(x) is defined by
D*d(x) = [0" + igt;WH(x)/2 + ig YB*(x)]®(x), (13.35)

in analogy with Eq. (12.40a) for W}(x) which has hypercharge —1.

The expression £® + £ in Eq. (13.33) is a direct generalization of the
Higgs model Lagrangian density (13.15), and the further analysis closely
follows that for the Higgs model. For 1 > 0 and u? < 0, the classical energy
density is a minimum for a constant Higgs field

O(x) = Oy = 92 | 13.36
= ¥o — ¢1? 4 ( . )



133 The standard electro weak theory 291

with
2

o = 921 + 19817 = 5 (13.37)
and all other fields vanishing. Choosing for the ground state a particular
value ®o, compatible with Eq. (13.37), again leads to spontaneous symmetry

breaking. Without loss of generality, we can choose
K 0 )
D, = = 13.38
o= (55)= (o (1339

v=(—p/DV* (>0), (13.39)

since any other choice of @, is related to the value (13.38) by a global phase
transformation. '

The Higgs field of the vacuum ground state, Eq. (13.38), is, in general, not
invariant under SU(2) x U(1) gauge transformations. However, it must be
invariant under U(l) electromagnetic gauge transformations, in order to
ensure zero mass for the photon and conservation of the electric charge. If we
assign the weak hypercharge Y = 4 to the Higgs field, then it follows from Eq.
(12.27) that the lower component ¢,(x) of the Higgs field is electrically
neutral, so that spontaneous symmetry breaking occurs only in the
electrically neutral component of the vacuum field (13.38), and charge
conservation holds exactly. Alternatively, we see from Egs. (13.16) and
(12.27) that an electromagnetic gauge transformation of the Higgs field is
given by

where

@(x) » @'(x) = exp [—i(Y + I¥)ef (x)]D(x). (13.40)
Applied to the vacuum field (13.38), this transformation gives
Oy - D) = Dy, (13.41)

ie. the vacuum field is invariant under electromagnetic gauge
transformations.

An arbitrary Higgs field ®(x) can again be parameterized in terms of its
deviations from the vacuum field @, in the form

_n-1/2 n1(x) + ina(x) .
=2 <v + o(x) + in3(x) (1342)

By means of this equation, we can express the Lagrangian density #%, Eq.
(13.34), in terms of the four real fields o(x) and n(x), i=1,2,3. The
interpretation and quantization of these fields lead to the same difficulties
which we met for the Higgs model. The way these difficulties are resolved and
the further analysis are closely analogous to our treatment of the Higgs
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model. The interpretation becomes particularly simple if we employ a special
gauge, the unitary gauge. We shall give the analysis in the next chapter
(Section 14.1). However, the similarity to the Higgs model is so close that we
can anticipate the results. We shall find that the fields n(x), i = 1, 2, 3, are un-
physical fields. In the unitary gauge they are transformed away, and the W'*
and Z° bosons are seen to acquire mass. The photon remains massless since
the electromagnetic gauge symmetry has not been spontaneously broken.
This is also reflected in the fact that only three unphysical fields #,(x) occur.
In contrast to the fields #,(x) disappearing, the field o(x) survives in the
unitary gauge and, on quantization, gives rise to massive, electrically neutral,
spin 0 particles (Higgs scalars).

To obtain non-vanishing lepton masses, we must augment the Lagrangian
density (13.33), by adding a suitable term £, to

L =L + PB4+ FH 4 pIH (13.43)

We shall couple the lepton and Higgs fields through Yukawa interactions,}
described by the Lagrangian density

L) = — g[PHEWRx)D(x) + PH)PR(x)PH(x)]
— g [P () B(x) + DR ()PHx)].  (13.44)

Here g; and g,, are dimensionless coupling constants, summations over
I =e,pu,...areimplied, as usual, and ®(x) is defined by
5 (x)

. (x)> (13.45)
In Eq. (13.45), 7, is the Pauli matrix (12.15) and T denotes the transpose.

We shall now show that the Lagrangian density #™ is invariant under

SU(2) x U(1) gauge transformations. The invariance of the first line of Eq.
(13.44) follows from the transformation laws (12.32a) and (12.37a) of the
lepton fields and the transformation laws (13.31) and (13.32) of the Higgs
field. For the second line of Eq. (13.44), we require the transformation
properties of ®(x). Under U(1) transformations, it follows from Egs. (13.32)
and (13.45) that

B(x) = —i[O(x)1,]" = (_

B(x) > B'(x) = exp [—igf(x)/2]1P(x). (13.46)

We shall show below that, under SU(2) transformations, ®(x) transforms in
exactly the same way as ®(x). From these transformation properties of ® and
of the lepton fields, the SU(2) x U(1l) gauge invariance of the second line of
Eq. (13.44) follows.

YA term of the form Y(x)d(x)(x), where y(x) and ¢(x) are spinor and scalar fields
respectively, is called a Yukawa interaction or a Yukawa coupling.
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In order to derive the SU(2) transformation properties of ®(x), it suffices to
consider infinitesimal transformations. For these, we obtain from Eq. (13.31)
that

O(x) > O(x) + 6O(x) = [1 + iFgr;mi(x) + - -]D(x)
1.e.
oD(x) = it gr;w;(x)P(x). (13.47)
Hence
0D'(x) = —idgw(x)D'(x);
and from Eq. (13.45)
0B(x) = —i[6DY(x)1,]T = —i[ —ilgw;(x)®(x)t;7,]". (13.48)

For the Pauli matrices (12.15) 77, = —1,7]. Substituting this relation in Eq.
(13.48), the resulting expression simplifies to

dB(x) = itgw;(x)t;[ —iD'(x)72]" = itgw;(x)7;D(x). (13.49)

Comparing Egs. (13.49) and (13.47), we see that ®(x) and ®(x) transform
in the same way under SU(2) transformations.

In the next chapter, we shall transform the Lagrangian density of the
electro-weak theory into the unitary gauge, and we shall see that the term
(13.44) not only generates interactions between leptons and Higgs bosons but
also leads to non-zero lepton masses. In their original formulation of the
theory, Weinberg and Salam took g, = 0, leading to zero neutrino masses.?
The second line of Eq. (13.44) represents the simplest way of introducing non-
vanishing neutrino masses. A generalization of considerable interest is to
replace the second line in Eq. (13.44) by

=GP (x)B(x) — GHPT ) (x)PE(x) (13.44a)

where G is a Hermitian coupling matrix. By writing Eq. (13.44a) in the
unitary gauge and diagonalizing it, one obtains the eigenstate neutrinos v;
(i=1,2,...) with masses m; (see Problem 14.5). The leptonic neutrinos v,
(! = e, u,...) are linear combinations of these eigenstate neutrinos v;, each of
which has its own characteristic time dependence. As a result, neutrino
mixing will occur. (This is just the well-known time dependence of a
superposition of energy eigenstates of a system.) For simplicity, consider the

‘In Section 11.2 the experimental upper bounds on the neutrino masses were given. For the
electron neutrino, V. A. Lyubimov et al. have recently obtained the lower bound m,, > 20 eV; see
the review paper by M. Shaevitz in the Proceedings of the 1983 International Symposium on
Lepton and Photon Interactions at High Energies, Cornell University, 1983.
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mixing of muon and electron neutrinos from two eigenstate neutrinos v, and
v,, specified in terms of a mixing angle o by

Vu cosa sina \/vq
Ve —sina  cosa/\v,

(The generalization to more neutrinos should be obvious.) If, for example, a
v, beam is created in an accelerator experiment, its composition will change
along its path, oscillating between pure v, and pure v, beam, with v, — v,
mixtures in between. The probability that a ‘neutrino-flip” v, —» v, has
occurred, when the beam has travelled a distance L from its source, is given
by

, : 3 —m)L
P(v, - v,) = sin® a sin |:(’"247Em1)j|

where E is the beam energy (we are assuming E > m;). Thus,fora # 0, neutrino
mixing will occur, and one would observe electron-neutrinos, violating lepton
number conservation, at distances L 2 E/(m? — m3) from the source.

Such effects are called neutrino oscillations. So far, there is no evidence for
their existence. However, many further experiments, designed to detect them,
are in progress or planned. Neutrino oscillations can only occur if neutrinos
have non-zero masses, and observing such oscillations would provide
information on these masses. Although non-zero masses do not necessarily
lead to oscillations, one might expect them from the close similarity of the
theories for leptons and for quarks, since in the latter case mixing definitely
occurs.

After this digression on neutrino mixing, we shall use the simpler form
(13.44) for #™ in the Lagrangian density (13.43) of the electro-weak theory.

In this book, we are restricting ourselves to the electro-weak interactions of
leptons only. However, the theory is easily extended to include quarks and
hence hadrons, enabling one to treat semi-leptonic processes. Indeed, this
extension, as well as the gauge invariance of the Lagrangian density (13.44), is
necessary in order to be able to prove the renormalizability of the theory. The
proof again relies on the use of ‘t Hooft gauges, mentioned in Section 13.2 on
the Higgs model, rather than of the unitary gauge which we shall employ in
the next chapter.’

We have now completed the derivation of the basic equations of the

! See D. H. Perkins, Introduction to High Energy Physics, 2nd edn, Addison-Wesley, Reading,
Mass., 1982, section 6.14.

$ For a summary of the experimental limits on neutrino mixing, for different assumed neutrino
masses, see the article by M. Shaevitz, quoted earlier in this section.

For the extension of the theory to quarks, see D. Bailin, Weak Interactions, 2nd edn,
A. Hilger, Bristol, 1982, Section 6.5; for a full discussion of renormalizability, see the articles
by Abers and Lee or the book by J. C. Taylor, cited in Section 13.2.
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standard electro-weak theory for purely leptonic processes and we shall
conclude the chapter by summarizing these equations.

The Lagrangian density (13.43) is from Eqgs. (12.39), (12.58), (13.34) and
(13.44) given by

P(x) = LHx) + LB(x) + LH(x) + L*(x)
= i[PHX)PPHx) + YEIPYI(X) + T (x)PYR ()]
+ [—3Bu(0)B*(x) — 1Gin(x)GH'(x)]
+ {[D*®(x)]'[ D, B(x)] — w*P'()D(x) — ALB'()D(x)]*}
+ { =g PrOWR)P(x) + OO () PH(x)]

— g, [P OO, () B(x) + BT, ()FH)T} (13.50)
Here B*'(x) and G#*(x) are defined in Eqgs. (12.53), (12.56) and (12.55) as
B*(x) = 0"B*(x) — ¢*B"(x) (13.51)
GI(x) = FI(X) + geipWH(x)Wi(x) (13.52)
with
Fi*(x) = ' WHx) — *WY(x). (13.53)

The covariant derivatives in Eq. (13.50) are defined in Eqgs. (12.40) and (13.35)
as

D*W¥I(x) = [0* + igt;WH(x)/2 — ig’ B*(x)/2]¥}(x) (13.54)
Dyi(x) = [0* — ig' BH)]YT(x) (13.55)
DR (x) = YR (x) (13.56)

D*®(x) = [0* + igr; WH(x)/2 + ig' B*(x)/2]®(x). (13.57)

The Lagrangian density (13.50) is invariant under SU(2) x U(1) gauge
transformations. However, the terms %M + #® are just the direct generaliza-
tion of the Higgs model Lagrangian density (13.15), and for 4 >0 and
u® < 0 the SU(2) x U(1) gauge symmetry is spontaneously broken. In the
quantized theory, the vacuum expectation value of the Higgs field

0
= = b n5
0lP(x)|0> = @, <v / \/2> (13.58)
where
v=(—p} /D" (>0), (13.59)
is, in general, not invariant under SU(2) x U(1) gauge transformations.
However, it is invariant under electromagnetic gauge transformations (which

are contained in the full set of SU(2) x U(1) transformations), so that the
photon remains massless and electric charge is conserved.






CHAPTER 14

The standard electro—weak theory

In the last chapter, we derived the basic equations of the electro—weak theory.
In this chapter, we shall consider its physical interpretation and applications.
In Section 14.1 we shall transform the theory into the unitary gauge which
facilitates the interpretation. In particular, it will become apparent that the
Lagrangian density, expressed in this gauge, describes photons, charged and
neutral leptons, W and Z° bosons, and Higgs bosons. We shall see that, with
exception of the photon, all these particles have acquired mass, and we
shall obtain expressions for these masses in terms of the basic parameters of
the theory. In Section 14.2 we shall derive the Feynman rules for the electro—
weak theory, which are an extension of those for QED.

In the following two sections we shall consider some applications. The
electro-weak theory is renormalizable and so allows calculations to be per-
formed to all orders of perturbation theory. This opens up a rich field of
phenomena for accurate calculations and asks for high-precision experiments
to test the theory, particularly the radiative corrections. The latter require
very elaborate calculations (for which a ‘t Hooft gauge would be more appro-
priate than the unitary gauge). We shall restrict ourselves to lowest-order
calculations.’ In Section 14.3 we shall consider neutrino—electron scattering,
which leads to the determination of the weak mixing angle fw from experi-

* Further applications, including ones to semi-leptonic processes, will be found in the
following books: D. Bailin, Weak Interactions, 2nd edn, A. Hilger, Bristol, 1982; S. M. Bilenky,
Introduction to the Physics of Weak Interactions, Pergamon, Oxford, 1982; E. Leader and E.
Predazzi, An Introduction to Gauge Theories and the New Physics, Cambridge University Press,
Cambridge, 1982.
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ment and hence to predictions of the masses of the W and Z° bosons. In
Section 14.4 we shall discuss several electron—positron annihilation processes
at increasingly higher energies. These experiments represent some of the
cleanest tests of the electro-weak theory and will be of great interest in the
next few years as more and better experimental results become available.

In the last section of the chapter we shall discuss the most important
unresolved puzzle of the theory: the mystery of the Higgs particle which has
not been observed so far; yet, its existence is essential for the renormalizability
of the theory. We shall see that the nature of the interactions of the Higgs
particle are such that, after all, it is not surprising that it has not yet been
detected, and we shall discuss which processes are most likely to lead to its
experimental discovery in the future.

141 THE LAGRANGIAN DENSITY IN THE UNITARY GAUGE
In the last chapter we wrote the Higgs field ®(x) in an arbitrary gauge as

_ -1 M)+ ima(x) )
D(x) =2 /<v+a(x)+in3(x)> (13.42)

This isospinor can always be transformed into the form

_A-172 0
D(x) =2 <v + a(x)) (14.1)
which no longer contains the fields n(x). Egs. (13.42) and (14.1) are
analogous to Egs. (13.10) and (13.18) for the Higgs model, and the gauge in
which the Higgs field has the form (14.1) is again called the unitary gauge.
The gauge transformation which transforms Eq. (13.42) into Eq. (14.1)
consists of an SU(2) transformation (13.31) which converts the isospinor
(13.42) into a ‘down’-isospinor, followed by a U(1) transformation (13.32)
which makes this ‘down’-isospinor a real quantity. Under this SU(2) x U(1)
gauge transformation, all other fields transform according to the correspond-
ing Eqgs. (12.32a), (12.32b) and (12.37a), (12.37b), and we shall assume that
all fields are already expressed in the unitary gauge.

To transform the Lagrangian density (13.50) into the unitary gauge, we
substitute Eq. (14.1) into it. We shall also use Eq. (12.43), its complex conju-
gate and Eqgs. (12.45) to replace the fields W#(x) and B¥(x) by W¥(x), W' (x),
Z#(x) and A*(x). At this stage we are still dealing with classical fields, so that
W (x) stands for the complex conjugate field. In using this notation, we are
anticipating that these fields will presently be quantized, and W'(x) will
denote the Hermitian adjoint field operator, as usual. The motivation for this
transformation is, of course, that the quantized fields W*(x), W'™(x), Z*(x)
and A*(x) describe W* bosons, Z° bosons and photons. The transformation
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of the Lagrangian density is straightforward but tedious, and we shall only
quote the results.

On transforming the terms #® + %" in Eq. (13.50) in this way one obtains*
LB+ M= _4F, F*
—3Flyu FW + miy WL W
—3Z,Z" +im3Z,Z"
+ H(0#0)(0,0) — smic?
+ ZP8 + ZiH 4+ ope (14.2)
where we have dropped a constant term, and £, etc., are given by
LB = ig cos Ow[(WIW, — W W,)0°Z*
+ @ Wy — By WYWHZ® — (3, W} — 8, WHWPZ]
+ie[(WiW, — WiW,) 0°A°
+ (B Wy — O WIWPA* — (O, W} — 8, WHWPAT]
+ g2 cos? Ow[ W W}EZ*ZP — Wy W'Z,Z"]
+ [ W, W}A AP — WyWE4,4%]
+ eg cos Ow[ W, WH(ZAP + A°ZP) — 2W, W™ 4,27

+ 3P WIW[WWE — Wewe] (14.3a)
P = _1l6* — Jvo? (14.3b)
L1 = 0> WiW?s + Lg* Wi W’o?
2 2
vg g 2
—Z7,Z° Z,Z%". 14.3
+ 4 cos? Oy o+ 8 cos? Ow ’ (14.30)

The parameters my, mz and my which have been introduced in Eq. (14.2)
are defined by

mw =3vg, mzy=myjcosOw, my=/(=2p%), (14.4)

and v and the weak mixing angle 6 are, from Egs. (13.59) and (12.47), given
by

v= (=D (>0) (14.5)
gsin By = ¢’ cos Oy = e. (14.6)

We now consider the remaining t®o terms #* + % in Eq. (13.50). We
again transform from the fields W% and B* to W¥, W™, Z* and 4* In

! In the following equations, all fields have the same argument x, and we shall therefore omit it.
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addition, we use Eq. (12 11) to replace left- and right-handed lepton fields y*
and y® by the complete fields . In this way one finds that

LH 4+ LM = (i@ — mW + P (19 — m,,
+ #1B + gt (14.7)
where #1® and ZIL are given by
L1° = ey, 4

- 2—\9/—2 [y (1 — v W W + §iy*(1 — ys), W1]

lpv,y (1 yS)'/’v,Za

" 4cos 0

m iy’ (1 — 4sin® Ow — ysWiZ, (14.3d)
L 1 1

= — » my e — ;mv,lpvl v,0. (14.3¢)

The parameters m; and m, which have been introduced in Eq. (14.7) are
defined by

m =vgi/\/2,  m, =vg,/\/]2. (14.8)

Finally, combining Egs. (14.2) and (14.7), one obtains the complete
Lagrangian density of the standard electro—weak theory in the unitary gauge

L =%+ & (14.9)
where ) )
Lo = lpl(la - ml)'/’l + lpv,(la - mv,)'/’v,
—4F F*
~LFy F¥ + mip Wiwe
- %ZWZMV + 7’”22 Z*
+ 4(0"0)(040) —im}o? (14.10)
and
Pr= LB+ PPB 4 FHH 4 pHB 4 pHL (14.11)

with the individual terms #1®, ... given by Egs. (14.3a)-(14.3¢).

Eq. (14.10) clearly admits interpretation as the Lagrangian density of free
fields which can be quantized in the usual way. The two terms in the first line
of this equation are just the Lagrangian densities of charged leptons with
mass m; and of neutrinos with mass m,,. The second, third and fourth lines
respectively describe photons, charged vector bosons (W?*) of mass my and
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neutral vector bosons (£ ) of mass my. The last line of Eq. (14.10) is just the
Lagrangian density of a neutral Klein—Gordon field, and the quantized o(x)
field describes neutral spin 0 bosons (Higgs scalars) of mass my. The mass
terms of the W* and Z° bosons arise from the spontaneous symmetry
breaking of the SU(2) x U(1) gauge invariance of the Lagrangian density
(13.50). On the other hand, the photon remains massless [i.e. there is no term
in A,A4* in Eq. (14.10)] since the electromagnetic gauge invariance is not
broken spontaneously. The lepton mass terms in the first line of Eq. (14.10)
have their origin in the Yukawa coupling terms ™ in Eq. (13.50).

Eq. (14.11) is the interaction Lagrangian density of the standard electro-
weak theory, with the individual terms (14.3a)-(14.3¢) describing the
interactions between pairs of particles. For example, ZLB s the interaction of
leptons with gauge bosons, etc. These terms will be discussed in the next
section where the Feynman rules for treating them in perturbation theory
will be derived. '

Egs. (14.4) and (14.8) relate the boson and lepton masses to the basic
parameters

g, g’a _ﬂZ, A" g, gv, (1412)

of the theory. Rather remarkably, these relations allow the masses of the W=
and Z° bosons to be determined in terms of three experimentally well known
quantities: the fine structure constant

a = e?/dn = 1/137.04, (14.13a)
the Fermi coupling constant
G =1.166 x 1075 GeV~? (14.13b)

[see Eq. (11.70b)], and the weak mixing angle 8w which is determined from
neutrino scattering experiments (see Section 14.3) and is given by

sin? By = 0.227 £ 0014 (0 < Ow < 7/2). (14.13¢)

From Egs. (11.43), (12.49) and (14.4), the parameter v can be expressed in
terms of G as

v=1(G/2)"1? (14.14)
and is therefore also known. Combining Eqs. (14.4), (14.6) and (14.14) gives

ar \'? 1 ar \'? 2
=|—=—= - === _— 14.15
i <G\/2> sinfy 7 <G\/2> sin20y (1)
and substituting the above values for a, G and fw leads to

+2.1
—18

+25

)GeV, my = <89.0 )GeV. (14.16a)



302 The standard clectro weak theory  Chap. 14

These predictions of the electro-weak theory are in good agreement with the
current experimental masses, reported in Chapter 11:

mw = (809 + 1.5 + 24) GeV, my = (810 + 2.5 + 1.3)GeV, (11.8b)
mz = (956 + 1.4 + 29) GeV, mz=(91.9 + 1.3 + 1.4) GeV. (11.87a)

This comparison is an important test of the theory. In deriving Eqs. (14.4),
from which the values (14.16a) were obtained, we assumed that the Higgs
field has isospin . The above agreement shows that this isospin value is
consistent with experiment.

Eqgs. (14.15) and the values (14.16a) derived from them were obtained from
the free-particle Lagrangian density and will, of course, be modified by terms
of order « when radiative corrections are taken into account. The calculation
of such corrections requires a discussion of renormalization which goes
beyond the scope of this book, and we shall merely quote the predictions for
the renormalized (i.e. physical) masses:*

+29
-27

+24

)GeV, my = <93.8 )GeV. (14.16b)
These values too are in good agreement with the experimental masses; at the
same time, they differ significantly from the lowest-order values (14.16a).
Clearly, these radiative corrections are important in obtaining accurate
values for my and mz, and precise measurements of these masses will be of
great interest since they will provide an experimental test of these radiative
corrections. In the following we shall disregard these corrections and work
in lowest order. :

We see from Eq. (14.6) that the fine structure constant and the weak mixing
angle also determine the coupling constants g and ¢'. Similarly, the Higgs—
lepton coupling constants g; and g,, are known from Egs. (14.8) and (14.14),
provided the mass of the corresponding lepton is known.

This leaves only the parameter 4 in the set (14.12) to be determined since,
from Eq. (14.5), (—u?) = Av%. 4 occurs as coupling constant in the Higgs self-
coupling terms #1™M, Eq. (14.3b), but there is no chance of measuring these at
present. From Egs. (14.4) and (14.5)

my = /(= 2u%) = {/(24v?),

so that the mass of the Higgs boson cannot be predicted from known data.
This is unfortunate, as knowing its mass would be of great help in
searching for it. The existence of the Higgs boson is essential: Feynman
diagrams involving the emission and subsequent reabsorption of Higgs
particles contribute to higher-order corrections, and without them the

! See the review article by W. Marciano in the Proceedings of the 1983 International Symposium
on Lepton and Photon Interactions at High Energies, Cornell University, 1983.
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clectro-weak theory would not be renormalizable. As my; becomes very small
or very large, these corrections become very large, and the success of the
theory in lowest-order calculations restricts my to the extremely wide ranget

7 GeV < my < 103 GeV. (14.17)

When considering applications of the electro-weak theory later in this
chapter, we shall always assume that my lies in the range (14.17).

142 FEYNMAN RULES

Weshall now derive the Feynman rules for treating the standard electro-weak
theory in perturbation theory, restricting ourselves to the rules for obtaining
the Feynman amplitudes of only the lowest-order non-vanishing graphs for a
process. Weshall work in the unitary gauge in which the Lagrangian density is
given by Egs. (14.9)(14.11). As discussed in the context of QED [see Egs.
(6.9) and (6.10)], the Lagrangian densities %, and %, are to be interpreted as
normal products in the quantized theory. In the following, normal products
will always be implied. The Lagrangian density (14.9)-(14.11) is invariant
under electromagnetic gauge transformations, and we shall choose to work in
the Feynman gauge which has been used throughout this book. In this gauge,
the Lagrangian density of the free electromagnetic field is given by Eq. (13.22),
i.e. the free-field Lagrangian density (14.10) is replaced by
Fo — 3[0,4"(x)]%. (14.18)
In the following, we shall denote this augmented Lagrangian density by #,.
In Section 6.2, we found that in the interaction picture the interacting fields
satisfy the same equations of motion and the same commutation relations as
the free fields, provided the interaction Lagrangian density #(x) does not
involve derivatives of the field operators. This result enabled us to obtain the
S-matrix expansion (6.23) and hence to derive the Feynman rules for the
amplitudes in Chapter 7. For the electro-weak theory, the interaction
Lagrangian density %)(x) involves derivatives of the fields. However,
irrespective of whether #j(x) involves derivatives or not, a generally valid
form of S-matrix expansion is

§= 2 nvf Jd4x1 A4, T{L1(xy)... Li(xn)}, (14.19)
n=0

provided one uses the free-field commutation relations in evaluating the
matrix elements of S.¥ For QED we have

Lix) = — #H(x), (14.20)

! These bounds are given in the review article by W. Marciano, quoted above. The lower
bound is discussed in D. Bailin, Weak Interactions, 2nd edn, A. Hilger, Bristol, 1982, section 6.7.

% For the derivation of this S-matrix expansion, see N. N. Bogoliubov and D. V. Shirkov,
Introduction to the Theory of Quantized Fields, 3rd edn, Wiley, New York, 1979, Section 21.
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and Eq. (14.19) reduces to our earlier expansion (6.23). From these results it
follows that the same procedures which were used in Chapter 7 for QED can
at once be applied to Eq. (14.19) to obtain the Feynman rules for the electro—
weak theory.

With our choice of electromagnetic gauge, the Feynman rules of QED are
taken over directly. The arguments used in extending these rules to the
electro-weak theory are largely analogous to those for QED. We shall dis-
cuss the new features which occur. Otherwise, we shall only quote the results
in Appendix B, leaving it to the reader to fill in the details.

We first consider the internal lines (propagators) and external lines (initial-
and final-state particles) of the additional particles which now occur. For the
neutral leptons (i.e. neutrinos and antineutrinos) the propagators and
external line factors have already been included in Feynman rules 3 and 4 in
Appendix B. The propagators and external line factors for W= bosons were
given when we considered the IVB theory in Section 11.4 (Feynman rules 11
and 12). The extension to Z° bosons is trivial, and Feynman rules 11 and 12
in Appendix B state these results for both W* and Z° bosons. Lastly, we
must deal with the Higgs particle. This is a massive neutral spin 0 particle,
such as was considered in Section 3.1. The expansion of the field ¢(x) in terms
of creation and annihilation operators is given by Egs. (3.8). Since the Higgs
boson has spin 0, Egs. (3.8) contain no polarization vectors and there are no
external line factors for Higgs scalars. The Feynman propagator for Higgs
scalars follows from Eq. (3.59) and is given by the Feynman rule

13. For each internal Higgs line, labelled by the momentum k, write a
factor

(k. my) = ! x (14.21)

—mk + ie
where my is the mass of the Higgs scalar. (We shall represent Higgs scalars
by dashed lines.)

It remains to discuss the basic vertices to which the interaction (14.11)
gives rise. There are now 18 types of vertices, stemming from the 18 terms in
Eqgs. (14.3a)-(14.3¢). Let us reassure the alarmed reader that the Feynman
rules for these vertices are easy to write down, and we shall shortly do so.

To begin with, we catalogue the terms of Eqs. (14.3a)-(14.3¢) in Table 14.1.
The first column in this table shows where in these equations each term
occurs. In the last column we number the terms for easier cross-reference in
Appendix B where the corresponding vertex factors are numbered (B.1) to
(B.18) in the same order. In the middle column of the table we show the fi¢lds
involved in each term. (For conciseness we put [ for y; and [ for ¥, etc.) It

* In Appendix B at the end of this book we summarize the Feynman rules for QED, as well as
the additional rules which will now be derived for the electro—weak theory.
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Table 14.1  The 18 basic interactions of the standard electro~weak theory

Type of Term

Reference interaction no.*

lines 1 and 2 W'wz 1

lines 3 and 4 WiwA 2

) line 5 wWtwz? 3
#1" Eq. (14.30) line & W WA 4
line 7 W'WZA 5

line 8 (WW)? 6

4

M Eq. (14.3b) { term J % .
term 1 W'Wo 9

) term 2 WWo? 10
21" Eq. (14.3¢) term 3 Z% 1
term 4 A E 12

line 1 T4 13

o line 2 viW + he. 14
71" Eq. (14.3d) line 3 l wWwiZ 15
line 4 11z 16

o term 1 llo 17
1" Eq. (14.3¢) {term 2 o 18

* The corresponding Feynman diagrams and vertex factors are given in Appendix B and
numbered (B.1)-(B.18) in the same order.

must be remembered that each term corresponds to many possibilities,
consistent with conservation of electric charge and of lepton numbers, just as
the basic QED vertex stands for any one of the eight basic processes shown in
Fig. 7.1. All the interactions are local interactions at one space-time point,
and the type of vertices to which the 18 terms give rise are obvious from the
middle column of Table 14.1 and are shown in Feynman diagrams (B.1)-
(B.18). For example, terms 1 and 2 describe the interaction of three gauge
hosons [Figs. (B.1) and (B.2)], terms 3—6 the interactions of four gauge bosons
[Figs. (B.3)«(B.6)], and so on. The lepton-boson interaction terms 13—-16 we
met previously in Eq. (12.48). Term 13 is the usual QED interaction, term 14
represents the interaction of charged leptonic currents with W* bosons, and
terms 15 and 16 the interaction of neutral leptonic currents with the Z°
boson.

The remaining interactions involve Higgs particles. Terms 7 and 8
correspond to self-interactions of three or four Higgs particles, terms 9-12 to
the interactions of Higgs particles with massive vector bosons. Having no
charge, the Higgs particle does not couple directly to the photon. Finally,
terms 17 and 18 originate from %%, Eq. (13.44), and represent the
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interactions of the Higgs particle with charged leptons and with neutrinos.
The latter interactions only occur for non-zero neutrino masses.

The derivation of the vertex factors of these 18 interaction terms is quite
similar to the corresponding calculation for QED in Section 7.2.1. We
shall therefore only remind the reader of the latter calculation and discuss the
new features which arise for the electro-weak interactions. The reader should
then easily be able to derive the 18 vertex factors which are given in Feynman
rule 14 in Appendix B.

In Section 7.2.1 we obtained the QED vertex factor iey* by calculating the
matrix element of the first-order term

S = Jd“x;’i’,(x) (14.22)

in the S-matrix expansion (14.19) between free-particle states. This leads to
the first-order Feynman amplitude .# and, omitting the external line factors,
to the corresponding vertex factor. For QED

Li(x) = e(Yy" Y Ay)x. (14.23)

In Section 7.2.1 we considered the basic process e~ - e~ + y and obtained
the first-order Feynman amplitude

M = iedw(p)yu(P)ep’ — p) (7.32)

and hence the vertex factor iey®. This vertex factor can be read off directly
from Eq. (14.23) by omitting the field operators and multiplying by a factor i
[which is just the factor i in Eq. (14.22)]. The same vertex factor is of course
obtained from any of the other basic processes shown in Fig. 7.1.

Next, we discuss the new features which arise when deriving the vertex
factors for the electro—weak theory.

First, some of the interactions in Egs. (14.3a)-(14.3¢) contain a particular
field operator not linearly but to a higher power, resulting in extra
combinatorial factors in the Feynman amplitude. Consider, for example, the
third term in Eq. (14.3c), i.e.

vg?

FoosT B 7 ZAZHX)0(). (14.24)

We shall calculate the vertex factor for this term by considering the first-order
process
Z%ky,ry) + Z%k,, r5) > H(ks) (14.25)

where H stands for the Higgs particle, k; (i = 1, 2, 3) are the four-momenta of
the three particles, and r; and r, label the polarization states of the two vector
bosons. The Feynman diagram for this process is shown in Fig. 14.1. Either of
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(a)

ZO%kq,rq)

2% kp,r5)

(8)

Fig. 14.1. The first-order process
ZOky, ry) + Z%ka, rz) > H(ks).

the two operators Z(x) in Eq. (14.24) can annihilate the Z°(k,, r,) boson, and
the other operator Z(x) will then annihilate the Z°(k,, r,) boson. This leads
to a combinatorial factor 2! and to the vertex factor

ivg?
2 cos? By

which is quoted in Eq. (B.11). In Figs. 14.1 and (B.11) we have attached the
tensor indices of the vertex factor (14.26) to the external Z° boson lines to
which they belong. The same vertex factor would of course have been
obtained from any of the related processes, e.g. Z° + Z° + H — vacuum. The
Feynman diagram of the basic vertex part, i.e. the Feynman diagram in which
only the characteristic features of the vertex are retained, is shown in Fig.
(B.11) in Appendix B.

The corresponding combinatorial factors for all other interaction terms are
derived in the same way. For graphs containing radiative corrections,
additional factors occur. Consider, for example, the modification of a Higgs
boson line, shown in Fig. 14.2. In this case, the above type of argument leads

i (14.26)

”~ ~
~
e N
{ )
/
AN S %
~
\\\ ’//

T ey e

Fig. 14.2. A modification of the Higgs boson line.
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to a combinatorial factor 3! for each vertex, i.e. (31)? in all. 1t is easy to see
that the correct weight factor is (3!)?/2. Choosing any one of the three
operators o(x;) and any one of the three operators a(x,) in [o(x,)]3[0(x,)]?
to take care of the two external lines, there are just two ways of contracting
the remaining operators [o(x)]?[6(x,)]? into two propagators. Since we shall
not be considering the calculations of radiative corrections in the electro—
weak theory, we shall not derive the rules for these additional combinatorial
factors.

A second point, requiring care, concerns the ordering of the tensor indices
associated with the vector fields. We illustrate this for the WHW1Z? interaction
term which occurs in line S of Eq. (14.3a), i.e. the term

g* cos® Ow[W,W }Z2°Z* — wyW'Z,Z"]. (14.27)
To find the vertex part, we consider the first-order process
ZOKy, 1) + Z0ks, 1) > WKL, ) + WKy, 1y). (14.28)

The corresponding Feynman diagram is shown in Fig. 14.3. We note, first of
all, that the final W™*(k\, r;) and W~ (k}, r;) bosons must be created by the
operators W'(x) and W(x), respectively [see Eqgs. (11.22)]. On the other
hand, the initial Z°(k,, r;) boson can be annihilated by either operator Z(x)
in Eq. (14.27), with Z(k,, r,) being annihilated by the other operator Z(x).
This leads to the Feynman amplitude

M = ig? cos? Ow{e.(2)eg(1)[e(1)eP(2) + e%(2)eP(1)]

— £5(2)e (1) [ea(1)EX(2) + £(2)e%(1)]} (14.29)
Zo(k1,f1) (a) (7) W+(Ir'1,r'1)
Z%ka,r2) 7 (B) (8)\N W™ (K>, rb)

Fig. 14.3. The first-order process Z%k;,r)) + Z%k,,ry) >
W*(ky,r)) + W™ (ky, ry). The order of the tensor indices
()...(6) corresponds to the vertex factor (14.30).
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whcre we abbreviated ¢, 4(k}) to £5(1), etc. Relabelling tensor indices so that
all terms have the common factor &,(1)eg(2)e,(1)es(2'), Eq. (14.29) reduces to

M = £,(1)ep(2)e,(1)es(2)
x ig? cos? Ow[g*g"" + g7g"* — 29*7’].
The corresponding vertex factor is
ig? cos? Ow[g*g" + g*'gP* — 2*"’] (14.30)

which is the result given in Eq. (B.3). In Figs. 14.3 and (B.3) we have attached
tensor indices to the external lines in the correct order to correspond to the
vertex factor (14.30).

The third new feature of the electro—weak vertices stems from the
derivative couplings which occur in the W1WZ and WTWA terms of ¥PB,
Eq. (14.3a). One sees from the plane wave expansions of the fields, e.g.
Eqgs. (11.22), that these derivative couplings introduce momentum factors
into the vertex functions. To obtain the exact result for the term

ig cos Ow[(WiW, — WhW,) 0°Z*
+ (0 Wy — OgWOWZ* — (0, W} — 0, WHWPZ*] (14.31)
in Eq. (14.3a), we consider the process
ZO%ky,ry) + W*(ky, r2) + W (ks, r3) - vacuum. (14.32)

The Feynman graph for this process is shown in Fig. 14.4(a). We have chosen
the process (14.32) in which all three bosons are annihilated at the vertex on
account of its greater symmetry compared with related processes, such as
Z° > W* + W~. Below we shall show how to obtain the vertex factors for

(B ~ WHlkhp,rp) (BY » Wlka,rp
Othy,rp) Z%ky,r1)
{a) (a)
(Y)Y W lks,r) (y) W+(/f3.f3
(a) {b)

Fig. 144. The related first-order processes: (a) Z°ky,ry) + W'h(ky,ra) +
W™ (ka, r3) = vacuum; (b) Z%k,,r)) » W (ky, r2) + W (ks, 13).
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these related processes from that for the reaction (14.32). In Fig. 14.4(a), we
have marked the boson lines with arrows which show the direction of the
flow of energy-momentum (and, for the W=* bosons, of charge) towards the
vertex where the particles are annihilated.

The operators W(x) and W'(x) are linear in the absorption operators of
W* and W~ bosons respectively. It follows from Eqs. (11.22) that, in
annihilating a W* boson with four-momentum k and polarization index r,
the operator 0,Wy(x) leads to a factor

(—ikq)e,p(K).

The same factor occurs if we replace the operator 6,Wy(x) by d, W}(x) or
0.Zp(x) and the W* boson by a W~ or Z° boson, as can be seen from the
plane wave expansions of the W'(x) and Z(x) fields. It follows from these
results that the Feynman amplitude for the process (14.32) is given by

M = —g cos O {[e(3)es(2) — (32— iKDE(L)
+ [(—ikan)ep(d) — (—ikap)e(2)1A(3)eX(1)
— [(—ikan)eg(3) — (—ikap)ea(3)1E(2)e%(1)]) (14.33)

where &} (k,) has been abbreviated to &%(1), etc. Relabelling tensor indices so
that all terms have the common factor g,(1)eg(2)¢,(3), Eq. (14.33) reduces to

M = £4(1)eg(2)e,(3)
x ig cos Owlg*’(ky — k2)? + gP'(ky — k3)* + g"%(ks — k1)F].  (14.34)
The corresponding vertex factor is
ig cos Owl[ g*(ky — k)" + gP?(ky — k3)* + g"(ks — k1)1 (14.35)

which is the result quoted in Eq. (B.1). Figs. 14.4(a) and (B.1) show the tensor
indices of the boson lines appropriate to the vertex factor (14.35). Since this
vertex factor depends on the four-momenta of the particles, we require an
arrow on each boson line to show the direction of the energy—-momentum
flow.

In Fig. 14.4(a), all particles are annihilated at the vertex, but the other cases
are easily derived from Eq. (14.35). If the Z° boson is created at the vertex, one
replaces k; by —k; in Eq. (14.35). If the W™* W ™ pair is created at the vertex,
one replaces k; by —k; (i = 2, 3), and one interchanges W* and W™ since the
flow of four-momentum and charge of the W= bosons now is away from the
vertex instead of towards it. Thus the vertex function for the Feynman
diagram 14.4(b) is given by

ig cos Owlg*(ky + k2)? + ¢%'(ks — ka2)* — g"(ky + k3)’].  (14.36)
Lastly, term 6 in Table 14.1, i.e. the term in (W' W)? which occurs in #FB,
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Eq. (14.3a), requires a comment. The vertex factor (B.6) for this term is
obtained by the same technique by which we derived the vertex factor (14.30)
for the vertex in Fig. 14.3. However, unlike all other cases involving W*
bosons, the vertex factor (B.6) is altered if one exchanges the index o with S,
or y with 6. Consequently, this vertex factor depends on the direction of flow
of the W* charges, towards or away from the vertex. In Fig. (B.6), these
directions are indicated by the arrows on the boson lines and correspond
to the vertex factor given with Fig. (B.6).

The above results enable us to write down by inspection of Eqs. (14.3a)-
(14.3e) the vertex factors of all terms in Table 14.1.

This completes our discussion of the Feynman rules of the standard
electro-weak theory. These rules enable one straightforwardly to calculate
processes in lowest non-vanishing order of perturbation theory. The
calculation of higher-order corrections involves very many graphs and, in
general, becomes extremely complicated. Except for sometimes quoting
results, we shall not consider such calculations further and shall limit our-
selves to lowest-order calculations.

14.3 ELASTIC NEUTRINO-ELECTRON SCATTERING

As our first application of the electro—weak theory, we shall consider the four
elastic neutrino—electron scattering processes

Vat+e oy, +e, Vv.t+e -V, +e, (14.37a)
Vet+te —v.+e, Vet+ e oV, +e. (14.37b)

More briefly, we shall refer to the first of these reactions as (v,e) scattering, etc.
If lepton numbers are conserved—as in the electro—weak theory—the leading
one-boson-exchange contributions to the (v,e) and (v.e) processes arise from
the Feynman graphs in Figs. 14.5 and 14.6 respectively, with similar graphs
in which neutrinos are replaced by antineutrinos for the other two processes.
The significance of these four processes is due to the fact that all of them
involve neutral currents [diagrams (a) in Figs. 14.5 and 14.6] and can
therefore be employed to determine the weak mixing angle Oyw. The (v.e) and
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{a) (b)
Fig. 14.5. The leading contributions to (v,e) scattering.
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Y Yo Yp ——————— 1, Y e
20 + H + w
e e e —p—L ¢ e~ %
(a) (b) (c)

Fig. 14.6. The leading contributions to (v.e) scattering.

(v.€) processes have additional contributions from the exchange of one W
boson, Fig. 14.6(c).

We first consider the (v,e) process. From the Feynman graphs 14.5 and the
Feynman rules in Appendix B, its Feynman amplitude is given by

Mve) = Mz(v,€) + My(ve) (14.38a)

where
2
‘g = . =
Mz(ve) = 8 cos? Ow O [“v,‘)’ (- ys)uvu:llDFaﬂ(k’ ma)[i, v (gv — gays)ue]

(14.38b)
and

My(v,e) = o m, me(it, u, JIAp(k, my)(teu,). (14.38¢c)

Here u and &' are the spinors of the initial and final leptons respectively, with
the kind of lepton (electron or v,) labelled, but momenta and spin quantum
numbers suppressed, and we have introduced the abbreviations

gv=2sin? By ~3%, ga= -1 (14.39)
The momentum k of the intermediate boson is given by
k=q—q=p —p, (14.40)

where g and ¢’ (p and p’) are the momenta of the initial and final neutrino
(electron) respectively.
With m; =~ 94 GeV and our assumption (14.17) for my, we have

k? « m2, k* « mi (14.41a)

even for quite high energies. In this limit, the Feynman amplitudes (14.38b)
and (14.38¢) become

—-iG
7t

My(v,€) = G2 ":—2 m, m(i, ) (iE,Ue) ‘ (14.42b)
H

»/”Z(vue) = ﬁ'v,,)’“(l - }’s)uv“][ﬁ'e}’a(gv - gA'}’S)ue] (14423)
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where we used Eqs. (14.4) and (14.14). We see from Eqs (14.42a) and (14.42b)
that .#y(v.e) is of order mvume/m,z, relative to #z(v,e) and so can be
neglected. We shall also assume that the lepton masses are negligible; more
precisely, that

s=(p+q)?°»m. (14.41b)
Here s 1s the square of the centre-of-mass momentum and is given by
S = 4EéoM = 2meELab + m:, (1443)

where Ec,q and Ep,, are the neutrino energy in the centre-of-mass system and
in the laboratory system in which the target electron is at rest.

If the conditions (14.41a) and (14.41b) hold, a straightforward calculation
leads to the total elastic (v,e) cross-section

G3s
or(vee) = 3 (9% + gvda + 93)- (14.44a)

In the same way, one obtains the total elastic (v,e) cross-section

_ G%s
o(v,.e) = 3 (9% — gvda + 93)- (14.44b)

We next obtain the Feynman amplitude for the (v.e) process
‘/”(vee) = ‘/”Z(vee) + ‘/”H(vee) + »/”W(Vee) (1445)

where the three terms stem from the three Feynman graphs in Fig. 14.6. The
first two of these graphs lead to the same amplitudes [Eqgs. (14.42a) and
(14.42b)] as before, with m, replaced by m, , so that the Higgs contribution
M y(vee) is again negligible. Assuming '

k? <« m%, (14.41c)
and that lepton masses may again be neglected leads to the amplitude

1G
My (vee) = ﬁ [y°(1 — ys)uy IO, a(l — 75)uel. (14.46)

[The relative signs of the amplitudes (14.46) and (14.42a) follow from the
Feynman rule 8 by arranging the lepton operators, which lead to .#;(v.e)
and .#w(v.e), in the same order.] Using the Fierz identity*

@y (1 = ys)ua)(@aya(l — ys)us) = — (@17*(1 — ys)ua)(lzya(l — ys)ua),
(14.47)

! For the derivation of this and other Fierz identities, see C. Itzykson and J. B. Zuber, Quantum
Field Theory, McGraw-Hill, 1980, pp. 160-162.
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where u,, ..., u, are arbitrary spinors, we can write the amplitude (14.46) as

G
M (vee) =~ i (1 =y J[ionll = y9huel. (1448

Combining these results in Eq. (14.45), it follows that the Feynman
amplitude .#(v.e) is obtained from Eq. (14.42a) by replacing v, by v,,
together with the replacements

gv—gv+1, ga—da+l. (14.49)

Making the replacements (14.49) in Eq. (14.44a) leads to the total cross-
section for elastic (v.e) scattering. A similar argument shows that the same
replacements made in Eq. (14.44b) give the total cross-section for elastic
(vee) scattering.

Experimentally, the above processes are investigated by scattering neu-
trinos from atomic electrons and detecting the recoil electrons. The (v,e) and
(v.€) reactions have been studied by several groups using v, and v, beams
originating from pion decay. The (v.e) process has been studied using a v,
beam produced from neutron decays in a nuclear reactor. The best value of
sin? Ow comes from an experiment in which the total (v,e) and (v,e) cross-
sections are measured using the same detector. Their ratio determines the
weak mixing angle with an experimental uncertainty which is smaller than in
a measurement of a single cross-section. Comparing this experimental result
with the prediction of the electro-weak theory leads to the value [F. Bergsma
et al., Phys. Lett. 117B (1982), 272]

sin? Oy = 0.215 + 0.040 + 0.015 (14.50)

where the first error is statistical and the second systematic. The latter is small
because both reactions are measured in the same apparatus and many
systematic effects cancel. A fit of gy and g,, treated as parameters to be
determined from experiment, to all available data on the reactions (v,e), (V,€)
and (v.e) yields the values [Krenz, 1982(N)]}

sin? Oy = 0.235 + 0.04, ga = —0.51 £ 0.06, (14.51)

in agreement with the value (14.50) and the theoretical prediction g, = —3%
which is independent of the value of sin? Oy.

A more precise value of the mixing angle is obtained from neutrino
scattering by nucleons. We shall not discuss this in detail and only quote the

t Except where stated otherwise, the experimental and theoretical data, quoted in the
remainder of this chapter, and their sources are given in two review papers by W. Marciano and
by B. Naroska in the Proceedings of the 1983 International Symposium on Lepton and Photon
Interactions at High Energies, Cornell University, 1983. These two review articles will be
identified by (M) and (N).
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resulting value, obtained by averaging over several experiments and estimat-
ing systematic errors [see Sirlin and Marciano (1981)(M)],

sin? By = 0.227 + 0.014. (14.52)

This value is seen to be consistent with the values (14.50) and (14.51) obtained
from purely leptonic processes.

144 ELECTRON-POSITRON ANNIHILATION

In Section 8.4 we discussed electron—positron annihilation in the context of
QED. We now reconsider this process in the wider framework of the electro—
weak theory, starting with the reaction

et +e oIt +1° d=urt ..., 1 # e). (14.53)

Inlowest order, this processisdescribed by the Feynman graphsin Fig. 14.7. The
corresponding Feynman amplitude is given by

M=M,+ Mg+ My (14.54)
where
. 2o 1 _
My =Xy (5 (e (14.552)
. s ] 1
7= gios cos? 'Bw” [ay*(gv — gA)’s)vz]m [Tc7.(gv — ga¥s)uel
(14.55b)
—i B B
My = v_2 memy(4v;) m (veue) (14.55C)

and ., u, and v, i, are the spinors of theinitial e * e~ pair and thefinall* [~ pair.
In writing Eq. (14.55b), we have omitted the term k,kg/m3 from the boson
propagator Dg,(k, mz), since this term gives contributions of order m,m;/m} *

e~ (- e - e {
R
+ + e
et [t + Al + I
(a) (b) (c)
Fig. 14.7. The leading contributions to e™ + e~ - 1" + 1.

* To see this, one writes the intermediate boson momenta in k.ky/m} as
1]
k=pi +p2=p)+05 (14.56)

where p,(p,) and p\(p,) are the momenta of the positive (negative) initial and final leptons
respectively, and uses the Dirac equation to replace .4, by (—o.m,), etc.
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We see from Egs. (14.55b), (14.55¢) and (14.4) that # y/.# 7 is of order

m.m; k> — m3
————- 14.57
m% k* —m¥ ( )

Hence .# ;; may be neglected, unless k? is very close to mg, and the Feynman
amplitude (14.54) reduces to
M= M+ M. (14.58)

Alongbut straightforward calculation gives the cross-section for the process
e*e” - [*17. Assuming that the electron’s energy E in the CoM system is
sufficiently high so that

s=k*>=4E*>» m? (14.59)

(i.e. all lepton masses may be neglected), one obtains the CoM differential
cross-section

o(0) = F(s)(1 + cos? 8) + G(s) cos 6. (14.60a)

Here 0 is the angle (in the CoM system) between the initial positron direction
and the final I * direction (compare Fig. 8.1), and F(s) and G(s) are given by

F(s)=i—s[1+ gv__m; <SG>
< )] (14.60b)

n\/2s—mz
w0 -5 e () () (O]
T s—mi\a 2 \s—m}/ \ a

[0 4
(gv + g3)?
8n? s —mj
(14.60c)

In these equations the terms proportional to a?, G and G? stem respec-
tively from |.#,|% the .#, — .# zinterference term and |.#,|* in the expression
|4, + M z* from which the cross-section is derived.
We distinguish three energy regions. First, we have the low-energy region,
in which :
s = k? « m% = 800 GeV?

and sG/o «< 1. We may then neglect the terms in Egs. (14.60b) and (14.60c)
arisingfrom .# ; (i.e. the effects of weak interactions) and Eqs. (14.60) reduce to
the cross-section (8.46) of pure QED.

As s increases, |.#,| falls off like 1/s while |.# | increases like |s — m3|™?,

i.e. the expansion parameter
m3 (sG '
z > <—a—> (14.61)

|s — m3|
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in Egs. (14.60b) and (14.60¢) increases. Hence we reach an intermediate energy
regionwherethe .#, — .# zinterferencetermisnolongernegligiblebut |.#z|? is;
in Egs. (14.60b) and (14.60c) we retain the terms in «G and drop those in G2. In
particular, G(s) is different from zero so that the cross-section (14.60a) con-
tains a term in cos 8 and displays a forward—backward asymmetry

_o@) —oa(r~0 G(s) cosb
“6(0) +o(m—06) F(s)1+cos’0

where0 < 6 < n/2. From Egs. (14.60b) and (14.60c) this becomes, on neglecting
terms proportional to G2,

2
A(0) = l/; g —% <SG> _cosf (14.63)

s—mi\a )1 +cos?f

A()

(14.62)

For s < m3, A() is negative (i.e. there is excess backward scattering) and its
magnitude increases rapidly with energy. To gain an idea of the size of the
asymmetry, we calculate A(6 = 60°). With g, = —4 and m; ~ 94 GeV,
A(0 = 60°) has the approximate vatues —0.03, —0.07 and —0.14 for the
total CoM energies /s = 2E = 20, 30 and 40 GeV respectively.

The asymmetry A(6) has been measured in this energy range for both p* ™
and t*t~ production. In comparing theory with experiment, it is essential to
take into account electromagnetic radiative corrections associated with soft
photons which are typically of the order of 10 per cent in this region and which
canthemselves generate positive asyimmetries of the order of 2 per cent. Asnoted
in Section 8.9, the precise value of the radiative corrections depends on the
experimental set-up. For this reason, it is usual to subtract the radiative
corrections from the experimental data before comparing with theory, so that
the results of different experiments can be compared more easily.*

Fig. 14.8 shows a typical result: the ‘radiatively corrected’ angular
distribution for u*u~ production at \/ = 34 GeV, obtained by the TASSO
Collaboration [R. Brandelik et al., Phys. Lett. 110B(1982), 173]. The agreement
of the experimental points with the electro—weak theory (the continuous curve)
isseento beexcellent, and thedeviation from thesymmetric dashed curve, which
corresponds to the lowest-order QED distribution, is apparent. Similar results
have been obtained in several other experiments and at different energies for
bothu*u™ andt* ¢~ production. For adiscussion of these, seethereview article
by B. Naroska, quoted in the previous section.

Going to higher energies, we reach the Z° resonance region: s ~ m%, i.e. the
total CoM energy \/ s is in the vicinity of the mass m; of the Z° boson. In this
region, sG/a is of order unity and it follows that, for s &~ m3, thecross-section for

! For a detailed discussion, giving typical results, sce F. A. Berends and R. Gastmans, ‘Radiative
Corrections in e* e~ Collisions’, in: Electromagnetic Interactions of Hadrons, vol. 2 (edited by
A. Donnachie and G. Shaw), Plenum Press, New York, 1978.
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Fig. 148. The differential cross-section (do/dQ)cem for the
process ete™ — u*pu”, at the total CoM energy 2E = 34 GeV.
[After R. Brandelik ot al., Phys. Lett. 110B (1982), 173.]
®: experimental data; electro—weak theory; ——~— QED.

the process e*e™ — [*1™ is dominated by the terms proportional to G2 in Egs.
(14.60b) and (14.60c), i.c. by the terms originating from |.# ,|%. Retaining only
these terms, we obtain from Egs. (14.60a)(14.60c) the total cross-section

2,.,6

G*“mg
(s —m3)* + &
for s &~ m3, where we have temporarily restored the infinitesimal parameter ¢

which occurs in the denominator of the amplitude .# z, Eq. (14.55b). Eq. (14.64)
can be written

1
orete” >ty = P (g% + 93)? (14.64)

12nI“(Z°—>e+e‘)I“(Z°—>l+l‘)
(s—m3)? +¢

where we have substituted the expression

L GRS A i = (s m3) (14.65)

This is the width for the decay process
YARSY A i (I=eun..), (14.67)

represented by the Feynman graph in Fig. 14.9, assuming that terms of order
m}/m} are negligible. In this approximation, the width (14.66) does not depend
on the type of lepton pair, I =e, y,.... The derivation of the decay rate
(14.66), using the method of Section 11.5, is straightforward and is left as
an exercise for the reader.
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(-

[+

Fig. 149. The decay process Z° —» [* + 1™

Eq. (14.65)correspondsto aninfinitesimally narrow peak inthe cross-section
atthe resonanceenergy /s = mz. Of course, the peak in the experimental cross-
section is not infinitesimally narrow. From the uncertainty principle, it must
have a width of order z~! = T, where 7 and I, are the life time and totaldecay
width of the Z° boson. More formally, near s = m3, higher-order corrections to
the denominator in Eq. (14.65) cannot be neglected, since in lowest order this
denominator vanishes as ¢ — (. The relevant corrections arise from the
propagator modifications, shown in Fig. 14.10, which involve intermediate
fermion-antifermion states, like [*]~ v,%,, to which the Z° boson can decay.
The calculation of these terms is similar to that for the vacuum polarization
graph, Fig. 9.8, given in section 10.4. We shall not discuss it here, but merely
quote the final result, which is that Eq. (14.65) becomes modified to

127T(Z° —» e*e [(Z0 > 1*17)
(s — m3)* + m3I?

or(ete” »1*7) = (s~ m3) (14.68)

where we have again set ¢ = 0.
Eq. (14.68) is a special case of the one-level Breit-Wigner formula*
i—>X)=4n— -

o= X) = e+ D@5, 7 1) 5 — )+ e

I4

(s m?

ZO ZO

Fig. 14.10. Modifications of the Z° propagator due to inter-
mediate states of fermion-antifermion pairs f f.

*See H. M. Pilkuhn, Relativistic Particle Physics, Springer, New York, 1979, p. 168.
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for the contribution of an unstable particle or resonance (of spin J, mass mand
total decay with I")) to the total CoM cross-section of a reaction i — X, in the
vicinity of the resonance energy \/s = m.I';and I'y are the partial widths of this
resonance for decay to the incident channel (i) and the exit channel (X)
respectively, s; and s, are the spins of the colliding particles in the incident
channel, and p is the CoM three-momentum of either colliding particle. For
highly relativisticenergies, the total CoM energy \/ sisverylargecompared with
the masses of the colliding particlesand p = \/s/2 = m/2.Inthisapproximation
andwiths; = s, = 1forthecase ofe* e collisions which weareconsidering, the
Breit-Wigner formula becomes

47'C(2J + 1)r,rx

(s — m?)? + mT?

Wecanapply Eq.(14.69)toany reactione*e™ — X which canproceed viaan
intermediate Z° boson: e*e” — Z° - X. At energies in the vicinity of the
resonance energy /s = mz, wheré the Feynman graph 14.11 will dominate, the
total cross-section is, from Eq. (14.69), given by
12a0(Z° s e*e)(Z° - X)
(s — m3)* + m3I?

or(i > X) =

(s & m?). (14.69)

orlete” 5 X) = (s = m3). (14.70)

We see from Eq. (14.68) that the total cross-section for the reaction
e*e” — %1 exhibitsapeakats = m3,with half-widthm,I",and a height which
is proportional to the square of the branching ratio
(Z° 1)

I,
Hence precision measurements of the cross-section (14.68) in the region of the
peak will yield accurate values for the mass of the Z° boson, its lifetime and the
branching ratio (14.71). (In the analysis of such experiments, the radiative

corrections associated with the emission of soft photons must again be
included!) Similar measurements for the corresponding peaks in the cross-

B(Z° 1% = (UI=epu,..). (14.71)

et

Fig. 14.11. The dominant contribution to the reaction e* + ¢~ — X,
in the vicinity of the Z° resonance peak.
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section (14.70) for other processcs will yield the branching ratios for other decay
modes of the Z° boson.

Thus an electron--positron colliding beam facility, operating at a total CoM
energy in the region of \/s = mz ~ 94 GeV, is ideally suited for studying the
properties of the Z° boson. At present, no such facilities exist; however, two
are under construction: the Stanford Linear Collider (SL.C) which should be
working in 1986, and the LEP electron—positron storage rings at CERN which
should become operationalin 1988.Inthelatter machineinparticular,thebeam
intensities are such that, at the Z° peak, several thousand Z° production events
per hour are expected. (Thisshould be contrasted with the present world total of
14 identified Z° decays, discussed in Section 11.7.) With such high event rates,
detailed studies of the kind discussed above willbecome practicable. Inaddition,
it may well be possible to detect other decay processes, which occur only in
higher orders of perturbation theory, despite their small branching ratios.

Sofar,we have considered those reactionse *e~ — X which, inlowest order of
perturbation theory, depend only onthe lepton—boson interactions (14.3d)and
(14.3¢), represented by the Feynman graphs (B.13)—(B.18) in Appendix B. The
boson self-coupling terms (14.3a), Figs. (B.1)~(B.6), are a most striking and
characteristic feature of a non-Abelian gauge theory, and electron—positron
annihilation processes allow us to explore the three-boson self-coupling terms
[lines 1-4 of Eq.(14.3a)and Figs.(B.1)and (B.2)]. One way would be to produce
Z° bosons in the LEP electron—positron storage ring at CERN and study
the decays

Z° s WHr+1l 4+, Z°->w 41t 4 (14.72)

at the Z° resonance energy. In lowest order, the first of these processes is
represented by the Feynman graph in Fig. 14.12, with a similar graph for the
second process. However, these Z ® decays are second-order processes, and the
predicted branching ratios are very small, of the order of 1078 [W. Alles et al.,

I

~

w
Fig. 14.12. The reactione™ + e~ =+ Z%° > W* + 1™ + ¥,
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Nucl. Phys.B119(1977),125]. This will makeitdifficult to study these reactions,
even with the beam intensities expected at LEP.
A more promising possibility is the reaction

et e oW+ W (14.73)

Inlowest order, the main contribution to this process comes from the Feynman
diagrams in Fig. 14.13. (There is an additional diagram in which the photon in
Fig. 14.13(b) is replaced by a Higgs boson. This contribution can be neglected
because of the very weak Higgs—lepton coupling; see Section 14.5.) The cross-
section predicted by the electro—weak theory for the reaction (14.73) has been
calculated [O. P. Sushkovetal.,Sov.J. Nucl. Phys.20(1975),537,and W. Alles ez
al., cited above]. In the immediate vicinity of the threshold, the cross-section is
dominated by the contribution from diagram 14.13(a). However, at somewhat
higher energies, the amplitudes for the Feynman graphs 14.13(a)-(c) become of
comparable importance, and the cross-section becomes extremely sensitive to
the large interference terms betweeén these amplitudes. For this reason, the
reaction (14.73) will, in the future when yet higher energies become available,
present us with an ideal way of testing the detailed forms of the yW* W~ and
Z°W* W~ interactions predicted by the standard electro-weak theory.

145 THE HIGGS BOSON

The recent detection of the W and Z° bosons, with the expected masses,
representsimpressive evidence in supportof theelectro—weak theory. However,
its ultimate confirmation and triumph will have to await the experimental
discovery of the Higgs particle. In studying neutrino—electron scattering and
electron—positron annihilation, we found that the contributions involving
Higgs particles are negligibly small. Unfortunately, these examples are typical.
The Higgs boson is a most elusive creature which will be difficult to observe.

To understand this, we must look at the coupling of the Higgs boson to other
particles, summarized in the Feynman graphs and vertex factors of Figs. (B.9)-
(B.12), and (B.17) and (B.18). The particles which are readily available in the
laboratory as beams and targets are photons, electrons, muons and some

e w

N

(a) (b) (c)
Fig. 14.13. The reaction e* + e~ - W* + W~
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f

f

Fig. 14.14. The basic vertex part of the
Higgs—fermion interaction, where

f=1vorgq.

hadrons (pions, kaons and nucleons). The Higgs particle does not couple
directly to photons. The couplings to leptons are specified by the vertex factor
—im/v, where m is the relevant lepton mass. The coupling of Higgs particles to
quarks g(= u, d, ...) is of the same form, so that the basic vertex part shown in
Fig. 14.14 and the associated vertex factor

—1i

—my o (f=hwg (14.74)
apply generally to leptons and quarks of mass m,.! Using Egs. (14.4) and
(14.6), we can write this vertex factor

—1i —ie mg

— My = —F *
v 7 2 sin Oy my

(14.75)

i.e. the Higgs{fermion coupling is of order m;/my compared with the QED
coupling strength and is weak for m; « my, a condition which is satisfied for
neutrinos, electrons and muons, and the light quarks (u, d, s) of which pions,
kaons and nucleons are composed. Hence, although it is possible to produce
Higgs bosons in reactions initiated by these particles, the production rates are
extremely small. For example, the contribution to the process e*e™ — ff
coming from the Feynman diagram 14.15 will be extremely small, even for

e~ f

et 7

Fig. 14.15. The contribution to the reaction

e* + e~ —f + f, involving the creation and reabsorp-
tion of one Higgs particle.

 See D. Bailin, Weak Interactions, 2nd edn, A. Hilger, Bristol, 1982, Section 6.5.
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e*e” collisions at the total CoM energy /s = my, where the probability of
the H resonance being formed is largest. The fact that Higgs particles have
not been observed in current experiments can be attributed to the weakness
of the interaction of Higgs particles with light fermions (m, « my) and so
does not lead to an improvement in the lower bound (14.17) for the mass of
the Higgs boson.

We next consider the Higgs—boson interaction terms (14.3c). Expressing the
parameters v and g in terms of the Fermi coupling constant and of the boson
masses my and m,, we see that these terms are proportional to the squares of
these masses. Consequently, the fact that these bosons are very massive now
works in our favour, in contrast to the Higgs—fermion coupling (14.75).

In looking for the Higgs boson with an electron—positron colliding beam
facility, the most promising reaction to search for and investigate is the process

et +e - HFIT+1. (14.76)

The! ™1™ pair produced in this reactipn allows particularly clear identification,
and the analysis gives the mass of the Higgs particle. Inlowest order, theleading
contributions to this process are described by the Feynman diagrams in Fig.
14.16. For | # e (e.g. for e*e™ — Hu*pu™), only diagram (a) occurs. How-
ever, even for' | = e the contribution from the diagram (a) will dominate at
energies near the resonance energy \/ s = mz. h

Both the SLC and LEP electron—positron colliding beam facilities,
discussed in Section 14.4, are designed to operate at the Z° resonance energy
\/ s &~ mz. Near this energy, the total cross-section for the process (14.76) is
given by the Breit~-Wigner formula (14.70), with X = (HI*17) as final state.
We can write this cross-section in the form

12a1(Z° > ete )l
(s — m2)% + mar?

(T(Z°-1017) T(Z°~HI')

or(ete” - HI* ™) =

14.77
T, Tz sy 14
-
e —> > [=e
ZO
T S H
ZO
et < < [t et
SH

(a) (b)
Fig. 14.16. The leading contributions, in lowest order, to the process e*e™ — HI*1~.
For | # e, only diagram (a) contributes. For | = e, diagram (a) dominates near the
resonance energy /s = mgz.
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The first factor on the right-hand side of this equation is the total cross-
section for the production of Z° bosons in electron—positron collisions. At
LEP, the corresponding event rate for Z° production, at the resonance
energy /s = my, is expected to be about 2000 per hour.

The second factor in Eq. (14.77) we estimate as follows. The partial width
I'(Z° - I"17) in the numerator is given by Eq. (14.66). Taking m; ~94 GeV,
one obtains the value I'(Z° - 1*17) ~ 0.09 GeV. The total width I’ in the
denominator is calculated by considering the decays Z° — f ffor all known
leptons and quarks. In this way one obtains the estimate I', ~ 3 GeV* and
hence the branching ratio I'(Z° - [*17)/T, = 0.03.

The last factor in Eq. (14.77) has been calculated by J. D. Bjorken [see
R. N. Cahn et al., Phys. Lett. 82B (1979), 113] who obtains the range of
values

0 .
3% 10-3 > & 2 HITIT)

I 10~4
SR YA

for the range of Higgs masses )
10 GeV £ my < 50 GeV.

Combining these results in Eq. (14.77), we obtain the estimate that the
number of e*e™ — HI™1~ events per hour expected at LEP, operating at the
Z° resonance energy, lies in the range 0.01 per hour (for my = 50 GeV) to 0.2
per hour (for myg = 10 GeV). These are quite reasonable event rates, certainly
for the lower mass values. Provided the Higgs boson is not too heavy, one
might hope that it will be detected in this way at LEP towards the end of this
decade.

PROBLEMS

14.1 For the process Z° — [*]~, derive the decay rate (14.66), assuming that terms of
order m?/m2 are negligible.
Show that the decay rate for the process Z° — v, is given by
’

[(Z° - vi) = Gm3

1
n12,/2
which, for mz = 94 GeV, has the value 0.18 GeV.

14.2 The Higgs boson decays to quark-antiquark and lepton-antilepton pairs. In
lowest order of perturbation theory these decays, H — ff (f=1,v,q), are
described by the Feynman diagram in Fig. 14.14. Derive the corresponding
decay widths

1 m2\3/2
e 2 S

* See J. Ellis’s article in Gauge Theories in High Energy Physics, Les Houches Session 37, Ed. by
M. K. Gaillard and R. Stora, North-Holland, 1983.
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14.3
14.4

14.5

14.6
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Derive the total cross-sections (14.44a) and (14.44b) for v,e ™ and v,e ~ scattering.
Starting from the Feynman amplitude, Egs. (14.58) and (14.55), derive the
differential cross-section for the process e*e” — 1"~ (I #e), making the
reasonable simplifying approximation sin? 8y, = 0.25, ie. gv = 0 and g, = —3.
Check your result against Eqs. (14.60a)-(14.60c).

Show that, in the unitary gauge, the generalized nggs—neutrmo coupling term
(13.444a) reduces to

-1
> 7 AW (x)[v + a(x)]
J

where

Yilx) = Zl Uy, (x)

and U is the unitary matrix which diagonalized the Hermitian coupling
matrix G:
(UGU*),'I' = i,-éij.
Hence show that Eq. (13.44a) leads to eigenstate neutrinos v; associated with
the fields y;(x), with masses
and that the Higgs—neutrino interactions are given by vertices of the form of
Fig. 14.14, where now f = v, are eigenstate neutrinos, and by vertex factors

—1
- " (f=v). .

For G;; = ¢;;, the eigenstate neutrinos v; become identical with the leptonic
neutrinos, v,, v,, ..., and we regain the results of Chapter 14.
Write down the Feynman amplitude for the decay process

Z%p,r)> H(P) + e"(q1,7r1) + €7 (g2, 72),

and show that, taking sin? 8y, = 0.25 as a reasonable first approximation and
neglecting electron masses, it reduces to

—ic
M = YA en()

where k = p — p’ and
C = vg?/(8 cos® Oy).
Hence show that, neglecting electron masses,
2

C
Cm)*45Yy Y |4 = —2)23[(4142) +— s (Pfh)(l’fh)]
r rlrz

From this expression, the differential decay rate dI' to final states in which
the momentum of the Higgs particle lies in the range d*p’ at p’ can be obtained
by integrating over the lepton momenta g, ¢, in a manner closely analogous to
that used to integrate over the neutrino momenta in muon decay, Egs. (11.53)-
(11.63). Exploit this to show that

cr dp 1
dr = L 24— (pky?
36Q2n)* EE' (k2 — m3)? [Zk g (PR ]




APPENDIX A

The Dirac equation

In this appendix we shall derive the main results relating to the Dirac
equation.?
A1 THE DIRAC EQUATION

The Dirac equation can be written

i al/;%) = [ca* (—ihV) + Bmc> Y (x) A

where & = (a4, a5, @3) and B are 4 x 4 Hermitian matrices satisfying
[aia aj:|+ = 25ij5 [ai, .B:|+ = 0, .Bz = 19 la.] = 1’ 2’ 3. (A2)
With

=8 ¥=PB (A.3)
the Dirac equation becomes
0
ity V) i) = 0 (A.4)
ox*

*The reader is assumed familiar with the elementary ideas of the Dirac equation as
given in, for example, L. 1. Schiff, Quantum Mechanics, 3rd edn, McGraw-Hill, New York, 1968,
pp. 472-488. A more complete treatment, suitable for complementary background reading to
this appendix, will be found in H. A. Bethe and R. W. Jackiw, Intermediate Quantum Mechanics,
2nd edn, Benjamin, New York, 1968, pp. 349 377.
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with the 4 x 4 matrices y*, u=0,...,3, satisfying the anticommutation
relations

0"y 1+ = 2g" (A.5)
and the Hermiticity conditions
P =00 (A.6)

Except for Section A.8 at the end of the appendix, the following properties are
consequences of Eqs. (A.4)-(A.6) only and do not depend on choosing a
particular representation for the y-matrices.

A fifth anticommuting y-matrix is defined by

y® = iy, (A7)
and y° has the properties
v y’1+ =0, (*)?=1, =9 (A.8)

Note that Greek indices will always stand for the values 0, ..., 3 only, and not
for 5.
The 4 x 4 spin matrices

i
0" =5[] : (A9)

satisfy
o't = y0ay° (A.10)
and, with ¢ = (623, 63!, 6'?) and i, j, k = 1, 2, 3 in cyclic order, we can write
o' = —yOySyk. (A.11)

So far the y-matrices, and matrices derived from them, have been defined
with upper indices: y*, ¢**, etc. We now define corresponding matrices with
lower indices by the relation

Yu =Gy’ (A.12)
etc.t

We also define the matrix y5 through

i
vs =gy Eapay VYY" = 9%, (A.13)

{ However, these matrices do not transform as tensors. We shall see below that it is bilinear forms
of spinors containing these matrices which have the transformation properties of tensors. See
Egs. (A.53).
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wlicre the completely antisymmetric alternating symbol ¢,,,, is equal to + 1
for (A, p, v, m) an even permutation of (0, 1, 2, 3), is equal to — 1 for an odd
permutation, and vanishes if two or more indices are the same.

A.2 CONTRACTION IDENTITIES

The manipulation of expressions involving y-matrices is often greatly
facilitated by the use of the following algebraic identities, which follow easily
from the anticommutation relations (A.5):
yt=4, yt=-2"
YV =49%, vyt = =2y (A.14a)
Yyt = 2000y + y7yPyy0)
If A, B, ... denote four-vectors and ‘A slash’ is defined by 4 = y*4,, etc., we

obtain the following contraction igentiﬁes from Egs. (A.14a):
AR

\‘. s \‘L ydyt = —24
ViABY = 4AB, 1, ABCY = —2CBA ¢ (A.14b)
VABEDY = 2(DABC + CBAD)

The completely antisymmetric alternating symbol £*7%, introduced in Eq.
(A.13), satisfies the following contraction identities:

e g0 = —2ghgr — 949y)
gmﬂyv{izm‘c - _ 6g: . (A 14C)
81p768apy5 = —24

A3 TRACES

We next list some rules and relations which are extremely useful in evaluating
the trace of a product of y-matrices. Some comments on the derivation of
these results are given at the end of the list.

(i) For any two n x n matrices U and V

Tr (UV) = Tr (V). (A.15)
(ii) If (y*y%...y"y") contains an odd number of y-matrices, then
Tr (y*y% ... y"9") = 0. (A.16)

(iii) For a product of an even number of y-matrices:
Tr (y*yf) = 4g%4, Tro*¥ =0 }
Tr (yayﬂyvyﬂ) = 4(gaﬂg76 _ gaygﬂ-’ + gaﬂgﬂv)

(A.17)
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and from Egs. (A.17):
Tr (AB) = 4(AB) (A.18a)
Tr (ABCD) = 4{(AB)(CD) — (AC)(BD) + (AD)(BC)},  (A.18b)
and generally, if 44, 4,,..., A,, are four-vectors, then
Tr(Adid; ... Ad2n) = {(A142) Tr (A3 ... As,) — (A1A43) Tr (Az4ds ... Azy)
+ o 4 (A1 Aza) Tr (Aads ... A2n- 1)} (A.18c)

In many specific cases one can evaluate traces more simply than by direct
repeated use of Eq. (A.18c). The contraction relations, Eqs. (A.14), are
particularly useful in this connection, as is

s

AB = AB — i6**A,By = 2AB — BA, (A.19a)
and the particular cases of this equation:
Ad = A% AB=—BA, if AB=0. (A.19b)
(iv) For any product of y-matrices
Tr (y% ... y"") = Tr (*p* ... v%y%) (A.20a)
whence N
Tr(Aids... Ad2n) = Tr (Asy ... A24y). (A.20b)

(v) The above results can be extended to products involving the y> matrix,
the most important relations being

5 — Sy = SyayBy = Sypby?y =
Try> = Tr (y°y*) = Tr (*yF) = Tr (y>y%y%y?) 0}_ (A.21)
Tr (%y%97°) = — 4ie?

Other results involving 7° are easily obtained from Egs. (A.15)—(A.21), using
Egs. (A.7) and (A.8) which define y° and state its main properties,

The following comments should suffice to enable the reader to derive Eqgs.
(A.16)-(A.21).

We obtain Eq. (A.16) by using (y°)2 = 1 and Eq. (A.15), whence

Tr(*...y") =Tr[(7%)**... "1 = Tr (... y"%).

In the last trace, we use [y, 7°], = 0 to commute the left-hand 7> matrix
through to the right-hand side, with the result —Tr (y*...7") for an odd
number of factors in (y*...v"). Hence Eq. (A.16) follows.

Egs. (A.17) are derived by repeated use of the anticommutation relations
(A.5) of the y-matrices and of the cyclic property (A.15) of traces.

To derive Eq. (A.20a), we introduce the transposed matrices y°T. It follows
from Egs. (A.5) and (A.6) that the matrices (—y*T) also satisfy the
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anticomnunation refations (A.S) and the Hermiticity conditions (A.6). Hence
by Pauli's fundamental theorem (A.61) there exists a unitary matrix C such
that

CyC 1= —y T, (A.22)
;. (A.20a) then follows from
Tres ) =Tr[(=C 1 TCN=CHTO) ... (=C™ 1T 0O)]
=Tr (T ...»T) = Tr [0 ... v)'].

Lastly, Egs. (A.21) follow from y% = iy%1y2y3, [y*, 73], = 0, the cyclic
property (A.15) of traces, aqd Egs. (A.16) and (A.17). E.g.

Try® =Tr[(7*°)°] = Tr [(—y°y*)y°1= —Try* =0.

A4 PLANE WAVE SOLUTIONS

The Dirac equation (A.4) possesses plane wave solutions

Y(x) = const. {:r((:))} g Fipx/h (A.23)

where p = (E,/c, p) and E, = +(m%c* + ¢*p*)"/%. In the single-particle
theory, u,(p) corresponds to a particle of momentum p and positive energy E,,
v(p) to momentum —p and negative energy —E,. The index r = 1, 2 labels
two independent solutions for each four-momentum p, which we shall choose
to be orthogonal.

The constant four-spinors u,(p) and v,(p), and their adjoints

a(p) = ul(@)y°,  o(p) = vl(PN°, (A.24)
satisfy the equations
(P—mcu(p) =0  (p+mcju(p) =0 (A.25)
uP(p—mc)=0  5(p)(p+mc) =0. (A.26)
With the normalization of these spinors defined by
ul(p)u(p) = vf(p)v.(p) = rfc’z’ (A.27)

one derives the following orthonormality relations from Eqs. (A.25) and
(A.26):

E
ul(p)us(p) = vi(PIvs(p) = m—cpz 5rs} (A.28)

ul(pv(—p) =0
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and

H(Pus(p) = —TAP)s(p) = a} (A29)
u(P)vs(p) = o(P)us(p) = 0

The spinors u,(p) and v(p), r = 1, 2, satisfy the completeness relation

2
; [uras(D)itrp(P) — Vra(P)Trp(P)] = Op- (A.30)

This relation can be established by showing that it holds for the four basis
states uy(p) and vy(p), s = 1, 2.

A5 ENERGY PROJECTION OPERATORS
The energy projection operators are defined by

+p+mc

i =
A*(p) e

(A.31)

They have the properties, which follow from Egs. (A.25) and (A.26), of
projecting out the positive/negative energy solutions from a linear combina-
tion of the four plane wave states u,(p) and v,(p), i.e.

AT =up), A Pup) = vr(p)} ’

. ) e ) (A.32)
4LPATP)=up), TPA (p)=0p)

and

A (@) = A~ Pu(p) =0,  FZMEA"(p) =uP)A(p) =0.
(A.33)

From Egs. (A.31) one verifies directly the property characteristic of
projection operators

[A*(P)]* = A*(p) (A.34a)
(since pp = p* = m*c?), as well as

A*@AT(P) =0, A'(M+A (P=1 (A.34b)

Using the completeness relation (A.30), one easily shows that the
projection operators A*(p) can be written

2 2
A;}(P) = ;1 “m(P)ﬁrﬂ(P)’ A;p(P) = _rzl vra(p)ﬁfﬂ(p)' (A35)
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A6 HELICITY AND SPIN PROJECTION OPERATORS

In Scction 4.2 we chose the plane wave solutions u,(p) and v,(p) of the Dirac
cquation as eigenstates of the 4 x 4 spin matrix
R

Ipl

(A.36)

aP
sulisfying the equations
o) = (— 1Y lu @),  oudp) = (=), r=12. (435
Correspondingly, we now define the operators
I*(p) = i1 £ 7, (A.37)
which are easily seen to have the properties

(I*(p)]* = I*(p), M7 (p)=0, MM*'P+I (P=1,
(A.38)

and
[A*(p), T*(p)] = [A™ (p), T*(p)] = 0. (A.39)

It follows from Egs. (4.35) and (A.37) that the spinors u,(p) and v,(p) satisfy
the equations

I @u(p) = o1,w(p), ¥ (p)o.(p) = d2,0:(p)
I~ (pup) = d2:u.(p), I~ (P)v:(P) = 61,0:(p)

« Wesee from Egs. (A.38) that the operators IT*(p) are projection operators
of mutually orthogonal states. From the first of Egs. (4.35), it follows that
u,(p)[us(p)] represents a positive energy electron with spin parallel [antipar-
allel] to its direction of motion p, i.e. it is a positive [negative] helicity state, as
defined in Section 4.3, following Eq. (4.48). Hence the operators IT*(p) are
called helicity projection operators.

The corresponding interpretation for the spinors v,(p) is also possible in the
single-particle theory, either in terms of negative energy states of electrons or
in terms of hole theory. Although our discussion of positrons in the quantized
field theory in Chapter 4 does not depend on hole theory, a reader familiar
with the latter may like to see the connection. Consider, for example, the
spinor v;(p). In the language of negative energy states, v1(p) represents a
negative energy electron with momentum — p and, according to Egs. (4.35),
spin parallel to —p, so that v,(p) is a positive helicity state of the negative
energy electron. Translated into hole theory language, the absence of this
negative energy electron represents a positron with momentum + p and spin
parallel to + p, i.e. it continues to be a positive helicity state of the positron.

For a zero mass Dirac particle, we can express the helicity projection

} r=1,2. (A40)
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operators in terms of the y° matrix. For m = 0, we have p, = |p|, and Egs.
(A.25) become

PIPIwB) = —¥*puw,(p) = Y*P'wi(P), (A.41)

where w,(p) stands for either u,(p) or v,(p). Premultiplying the last equation
by 7°v° and using Eq. (A.11), we obtain

7> w,(p) = o,w,(p) (A.42)
i.e. the helicity projection operators (A.37) become, for m = 0,
IT*(p) = 3(1 £ 7%). (A.43)

For particles of non-zero mass m, this result holds to O(m/py) in the high-
energy limit.

So far we have considered helicity projection operators only. For a Dirac
particle, the spin component in an arbitrary direction is a good quantum
number in the rest frame of the particle only. We shall see that in the rest
frame one can define spin projection operators for an arbitrary axis of
quantization in a covariant way, and by carrying out a Lorentz transforma-
tion to an arbitrary coordinate frame one can then define spin projection
operators in this frame.

With the axis of quantization in the rest frame of the particle specified by
the unit vector n, we define the unit vector n* to be given in the rest frame by

n* = (0, n). (A44)
From the invariance of scalar products, it follows that in any other frame also
n?=—1, np =0, (A.45)

where p is the four-momentum of the particle in this frame. The required spin
projection operators are then given by

IT*(m) = 31 £ vh). (A.46)

One verifies easily that these operators satisfy equations like Egs. (A.38),
characteristic of projection operators, and that they commute with the energy
projection operators A*(p) for all vectors p satisfying Eq. (A.45). It is left to
the reader to verify that, in the rest frame of the particle, the operators (A.46)
have the desired properties. A matrix representation suitable for this purpose
is given below, Egs. (A.63)-(A.66).

A.7 RELATIVISTIC PROPERTIES
The Dirac equations for ¥(x) and its adjoint §(x),

ih,w() " 117()
ox*

—mcy(x) =0,

Y+ mef(x) =0, (A47)
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are Lorentz-covariant, provided the spinors (x) and {(x) transform
appropriately. We shall consider homogeneous orthochronous Lorentz
transformations

Xt o X = A* X, (A.48)
i.c. A% > 0and det A*, = + 1, so that the sense of time is not reversed, but the
transformation may or may not involve spatial inversion. It can be shown *
that corresponding to each such transformation one can construct a non-
singular 4 x 4 matrix § = S(A) with the properties

P =A"SySs ! (A.49)
and

S = y0stHyo, (A.50)

If the transformation properties of the Dirac spinor y(x) are defined by

Y(x) = ¢ (x) = SY(x), (A.51)
then the covariance of the Dirac equations (A.47) is easily established.
From Egs. (A.50) and (A.51) one derives the corresponding transformation
property of the adjoint spinor /(x) as
Y(x) = P'(x) = (xS (A.52)

From Egs. (A.49), (A.51) and (A.52), one obtains the five basic bilinear
covariants of the Dirac theory. Under a Lorentz transformation

772 [ scalar W

Iy vector

Yo"y transforms as a ¢ antisymmetric second-rank tensor . (A.53)
gy pseudo-vector

vy ) | pseudo-scalar J

Fnally, we obtain the explicit form of the transformation (A.51) for an
infinitesimal Lorentz rotation (2.46), i.e.

Xy = Xy = ApyX = (G + €)X (A.54)
where ¢,, = —e¢,,. Eq. (2.47) now becomes
Ya(X) = YolX') = Syp¥p(X) = (8ap + 32 SEDYH(X)
or in matrix form
Y(x) = Y'(x') = SP(x) = (1 + 36, S"")Y(x) (A.55)
where $*¥ is antisymmetric.
t See, for example, Bethe and Jnckiw, quoted al the beginning of this appendix, pp. 360-365,
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Using the orthogonality relation (2.6) for A,,, we can rewrite Eq. (A.49) as
SyAS Tl = AR (A.56)

Using Eq. (A.55) we can write the left-hand side of Eq. (A.56), to first order
in g,,, as

v + e [S*, 1], (A.57)

From (A.54) the right-hand side of Eq. (A.56) can be written

(g + &8 =9t + gte.,
=" + 289" — 7'9™). (A.58)
Equating the last two expressions, we obtain
[$*, "1 = v"g™ — v"g™,
and one verifies directly that this equation has the solution

SH = LyryY, (A.59)

Hence, from Eqgs. (A.55) and (A.59), and the definition (A.9) of ¢**, one finds
that under Lorentz transformations a Dirac spinor transforms as

W) = Y (X) = Y() = 500" Y (x). (A-60)

A8 PARTICULAR REPRESENTATIONS OF THE y-MATRICES

So far we have developed the Dirac theory in a representation-free way,
relying only on the anticommutation relations (A.5) and the Hermiticity
conditions (A.6) of the y-matrices. There are many ways of writing y*
u=0,...,3, as 4 x 4 matrices such that Eqs. (A.5) and (A.6) hold. If y#
u=0,...,3 and 3* u=0,..., 3, are two such sets of matrices, i.c. each set
satisfies Egs. (A.5) and (A.6), then Pauli’s fundamental theorem? states that

= UpU", (A61)

where U is a unitary matrix.
We shall state two particular representations which are useful in practice.
(1) Dirac—Pauli representation. This representation has a simple non-
relativistic limit.
In terms of the Pauli 2 x 2 spin matrices

0 1 0 —i 1 0
01=<1 0> az=<i ’0> a3=<0 “1> (A62)

! For its derivation, see Bethe and Jackiw, quoted at the beginning of this appendix, pp. 358-
359.
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the Dirac matrices can in this representation be written as

o Y a5 e
- Tk ., (A63)

yk=Bak=< 0 ”"), k=1,23
— 0k 0
whence
" Oy 0 .. . .
o = < >, i, j, k =1, 2, 3 in cyclic order, (A.64)
0 Oy
. . 0 Oy
% = i, =1 < >, k=123, (A.65)
Oy 0
and
01
5= . A.66
' <1 o> {A66)

A complete set of plane wave states is now easily constructed. With the
two-component non-relativistic spinors defined by

1 0
1= = <0>’ V2= = <1> (A.67)

the positive and negative energy solutions of the Dirac equation for a
particle at rest can be written

0 (0) = <’(‘)> 0i(0) = <f> r=1,2. (A.68)

il

Since
(me £ P)me F p) = (mc)*> — p* =0,
it follows that

&
_ (mc + p)
u(p) = J@mE, + 2m*c?)

u(0), r=12, (A.69)

and

_ (mc —p)
"B = omE, + 2

v(0), r=12, (A.70)

are solutions of the Dirac equation with energy-momentum vectors +p =
(% E,/c, £ p) respectively. The denominators in Egs. (A.69) and (A.70) ensure
the normalization (A.27).
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From the representation (A.63) we can write Eq. (A.69) as

Xr
, = A ’ = 1, 2, A.71
u(p) <BP'6xr> r ( )
where
E + mc?\!/? c
A=|2— > B=——. A72
< 2mc? ) E, + mc? (A.72)

Using Egs. (A.62) and (A.67) we finally obtain from (A.71)

1 0
0
ui(p) = A Bp? ) ux(p) = A4 B(p' — ip?) (A.73)
B(p* +ip?) —Bp?

In the same way, the negative energy spinors (A.70) can be written as

o(p) = A <B "',“X">, r=1,2, (A.74)
4 \
and
B(p' —ip?*) Bp?
o (p) = A4 “?”3 o =a P 1+ ) ars)
1 0

We see that the spinors (A.73) and (A.75) are, in general, not helicity
eigenstates but eigenstates of the z-component of spin in the rest frame of the
particle.

The behaviour of these solutions for non-relativistic velocities v (i.e.
v/c & |p|/mc « 1) is easily seen. For the positive energy solutions u,, the upper
two components are very large compared to the lower two components, while
for the negative energy solutions it is the lower two components which
dominate.

(ii) Majorana representation. We showed in Section 4.3 that the symmetry
of the quantized Dirac field between particles and antiparticles becomes
particularly obvious if one works in a Majorana representation, distinguished
by the property that the four y-matrices are pure imaginary, i.e. using a
subscript M to denote a Majorana representation we require

Wit = = u=0,...,3. (A.76)



Problems 339

A particular Majorana representation v is obtained from the Dirac—Pauli
representation, Egs. (A.63)-(A.66), by the unitary transformation [see Eq.
(A.61)]

W = Uy*U’ (A.77)
with
1
U=UT=U_1=—~2~y°(1+y2). (A.78)
Explicitly, the matrices in this Majorana representation are given by
0 o ic; 0 )
0 . 0,2 _ 21, 1 p241 o312 3
M= <0'2 0) ™M=77Y 10 <0 ia3>
0 -0, . —ioy 0
2 .2 , 3 _ 023 _ig23 =
- ! <02 0 ) M= ’ < 0 —-i01> -
A.79)
0 (
5 _ _:0,1.3 _ 031 _ (92
M= WYY Yo <0 _0_2> )

We see that in this representation all five y-matrices are pure imaginary,
since the Pauli matrices ¢, and o5 are real and o, is pure imaginary.

PROBLEMS
A.l From Eq. (A49) prove that
S 1SS =95 det A

and hence that y(x)y®y(x) transforms as a pseudo-scalar under Lorentz trans-
formations. Establish the transformation properties of the other four covariants
in Eq. (A.53) in a similar way.

A.2 For any two positive energy solutions u,(p) and uy(p’) of the Dirac equation prove
that

2miuy(p')y u,(p) = (P )(P' + P)* + i0*(p" — p)yJur(p). (A.80)
Eq. (A.80) is known as Gordon’s identity. [ Hint: Consider the identity
us(p AP —m) + (F' — m)¢Ju,(p) =0

for an arbitrary four-vector a,.]






APPENDIX B

Feynman rules and formulae for
perturbation theory

In this appendix we collect together the principal results of \covariant
perturbation theory, i.e. the expressions for cross-sections, life times and
Feynman amplitudes, and the Feynman rules for writing down these
amplitudes directly from the Feynman diagrams. This summary is intended
for readers who have assimilated these methods and wish to apply them.
Explanations have been kept to a minimum but the frequent cross-references
should help readers in difficulty.

(i) Feynman amplitude. The Feynman amplitude .# for the transition
li> = |f> is defined in terms of the corresponding S-matrix element S;; by

Spi = 8p + 2m)*6" <Z pr— 2. P.')
1 1/2 1 1/2 "
<11 <2";7§ ) I;[ <2VE',> [T @m)'>.a (8.1)

where p; = (E;, p;) and p; = (E/, p;) are the four-momenta of the initial and
final particles and ! runs over all charged and neutral external leptons in
the process. m; is the mass of lepton . We are retaining non-vanishing neutrino
masses in all basic equations. The limit m, — 0 is easily obtained for
transition rates, etc.

(if) Cross-section. The differential cross-section for the collision of two
particles (i = 1, 2) moving collinearly with relative velocity v, and resulting
in N final particles (f=1,2,..., N) is given by

1 d°p’
do = (2n)*8¥ <Z p, z P1>4E Ezl’rcl <I—[ (2m1)><1;[ (2n—)3l)2fE7>|,/l{|2 (8.8)
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In Eq. (8.8) all initial and final particles are in definite spin/polarization
states. Eq. (8.8) holds in any Lorentz frame and

vrer = [(P1P2)? — mim31'*/(E, Ey); (89
in particular:
Ei+E
Uret = |1l B (CoM system) (8.10a)
E\E,
Urer = |P1l/E1 (laboratory system). (8.10b)

(iii) Life time. The differential decay rate dI" for the decay of a particle
P with four-momentum p = (E,p) into N particles with four-momenta
Py= (E,, Py) is given by

1 d3 ’

Eq. (11.36) refers to definite initial and final spin/polarization states for all
particles.

The life time 7 of the particle P is given by

7= B/T (11.38)
where T is the total decay rate for the above decay mode, and B is the
branching ratio for this mode, Eq. (11.37).

(iv) The Feynman rules for QED. The Feynman amplitude for a given
graph in QED is obtained from the Feynman rules of Sections 7.3 and 8.7.
Some of the Feynman rules for charged leptons I* apply with trivial changes
to neutral leptons v; and v,. To avoid lengthy repetition later, we write these
rules at once for both charged and neutral leptons.

1. For each QED vertex, write a factor

(- (~

4

{a)

2. For each internal photon line, labelled by the momentum k, write a
factor

iDrap(k) = i”;i%' (f’)\/\:/\./'(f ! (7:47)

3. For each internal lepton line, labelled by the momentum p, write a
factor

iSp(p) =1

Fomtie  ® . . 0%

Here m stands for the mass m; or m, of the particular lepton considered.
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4. For each external line, write one of the following factors:

(a) for each initial lepton I~ or vi: u.(p) » —> < (7.49a)
(b) for each final lepton I~ or v 4.(p) e > o (7.49b)
(c) for each initial lepton I* or vi: 5(p) p < e (7.49¢)
(d) for each final lepton I or v;: v(p) e < P (7.49d)
(e) for each initial photon: &,,(k) (@) (7.49¢)

g S e e

(D) for cach final photon: ! 5e(K) e~~~y (749D

In Egs. (7.49) p and k denote the three-momenta of the external particles, and
r (=1, 2) their spin and polarization states.

5. The spinor factors (y-matrices, Sg-functions, four-spinors) for each
fermion line are ordered so that, reading from right to left, they occur in
the same sequence as following the fermion line in the direction of its
arrows.

6. For each closed fermion loop, take the trace and multiply by a factor
(-1).

7. The four-momenta associated with the lines meeting at each vertex
satisfy energy-momentum conservation. For each four-momentum g which
is not fixed by energy-momentum conservation carry out the integration
(2m)~* f d*q. One such integration with respect to an internal momentum
variable g occurs for each closed loop.

8. Multiply the expression by a phase factor dp which is equalto +1(—1)
ifan even (odd) number of interchanges of neighbouring fermion operators is
required to write the fermion operators in the correct normal order.

To allow for the interaction with an external static electromagnetic field
Aen(X):

(a) In Eq. (8.1), relating .# to Sj;, make the replacement

(2m)*6@ <Z pr—3. pi> - (2n) o <Z E; =Y E,-)- (8.89)

(b) Add the following Feynman rule:

! For linear polarization states, &,,(K) is real. In general it is complex and we must then replace
£ro(k) by £x(k) for a final-state photon.
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9. For each interaction of a charged particle with an external static field
A(x), write a factor

Aea(q) = Jd3x e_i""‘Aea(x). (:)\/\:/-\/\( (890)

Here q is the momentum transferred from the field source ( x ) to the particle.
(v) Additional Feynman rules for the standard electro-weak theory. The
following rules allow calculations to be carried out in lowest non-vanishing
order of perturbation theory only.}
11. For each internal massive vector boson line, labelled by the momen-
tum k, write a factor

(= gug + kakg/m?)  (a) k (B)

iDFaﬂ(k, m) =

where m = my for a W* boson, and m = my for a Z° boson.
12. For each external line, representing an initial or final W* or Z° vector
boson, write a factor

k (Q) «
K ~—p v (initial) 12
£ra( ) (a) p : (l 1 )

~——~p—~_—~ (final)

If complex polarization vectors are used, we must instead write ¢%(k) for a
final-state vector boson.

13. For each internal Higgs line, labelled by the momentum k, write a
factor

. i
lAp(k, m,,) = 'kz—_—rnm @ cn e e i (1421)
where my is the mass of the Higgs scalar.

14. The standard electro—weak theory gives rise to 18 basic vertex parts,
resulting from the terms in Egs. (14.3a)—(14.3¢), which were listed in Table
14.1. Below we give the Feynman diagrams of these basic vertex parts and the
corresponding vertex factors, numbered (B.1)~(B.18) in the same order as
the terms in Table 14.1.}

i Feynman rule 10 of Section 11.4 dealt with the vertex factor of the IVB theory. This rule will
now be incorporated in rule 14 for the vertex factors of the electro-weak theory.

§ Feynman rule 14 lists all the interactions of the electro—weak theory. In order to have a
complete, self-contained list of Feynman rules for QED in (iv) above, we also included the QED
vertex factor in Feynman rule 1.
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W

(B.1)
(B.2)
ie[g*(ky — k3)" + gP'(k; — k3)* + g"*(ks — k1) ]

70 (a) () W
(B.3)

z° -

B &)
ig? cos® Owlg*’g" + g*'g"* — 29¢’] _
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y (a) (y) W
w-
7B (8)

ie?[g?g"" + g7gP° — 2¢*g°]

W+

-
78 (8)

ieg cos Ow[g¥g" + g*g* — 24°Fg"*]

W (a) (y) w+

- W_
w (B) (&)

ig*[297¢"° — g**g” — g*°¢""]
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(B.5)

(B.6)
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(B.8)

(B.9)

(B.10)
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L .
igy* .
——— (1 — 4sin? Oy —
o 4 cos Ow ( w=7s)
Z .
—igy*
(a)
where we defined
gv=2sin’0w ~3%  ga=—%
1_\/ ¢
i .
: ~—1
i - M
(
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The coupling constants satisfy the relations
gsinfBwy =g cosby =e

and the particle masses are, in lJowest order, given by
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(B.16)

(B.16a)

(B.16b)
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(14.6)

(14.4)
(14.8)

My = %Ug, my = mW/COS 0w, my = \/(_2/12)’
m=vg/y2,  m,=vg,/y2,
where
._uz 1/2
p= < ; ) =(GJ2)"Y2 (>0), (14.5)and (14.14)
and hence







Index

Abelian, 265
Absorption operator, 8, 62, 68, 87
Adiabatic hypothesis, 102, 192
Angular momentum

conservation, 3740

of a spinor field, 65
Annihilation operator (see also Absorp-

tion operator), 8, 45

Anti-particle, 49-50, 70-71

Bare particle, 102, 117, 176

Basic vertex part, 108

Bhabha scattering, 116, 150
Bilinear covariants, 335, 339
Bloch—-Nordsieck theorem, 170, 171
Bose—Einstein statistics, 9, 72-73
Branching ratio, 246
Bremsstrahlung, 165

Canonical quantization, 30-33
Charge
conjugation, 58, 94
conservation, 36
operator, 36, 49, 65, 69
renormalization, 186, 191, 194, 196—
198, 213, 214
Chiral phase transformations, 80
Coherent photon states, 10, 25
Commutation relations
canonical, 32

‘covariant, 50
equal-time, 33
Compton scattering, 122, 153, 180
Conjugate field, 31
Conservation laws
angular momentum, 3740
derivation from symmetries, 33
electric charge, 36, 49, 262
energy-momentum, 37-40
lepton numbers, 132, 240, 294
Continuity equation, 34
Contraction
identities of gamma matrices, 329
of field operators, 104
Coulomb gauge, 3
Coulomb scattering, 162
electron polarization in, 163
Counterterm, 190, 213
Covariant derivative, 263, 269, 270, 290
Creation operator, 8, 45, 62, 68, 87
Cross-section, general formula for, 138
Current
charged, 257, 266
conserved, 35, 82, 92, 262
clectromagnetic, 49, 65, 266
leptonic, 237, 266
neutral, 257, 266, 272
weak
hypercharge, 267
isospin, 266

s
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Decay of
Higgs particle, 325
muon, 247, 259
tauon, 253
W boson, 254
Z° boson, 318, 321, 325, 326
Decay rates, general formula for, 245
Decay width, 246
Destruction operator: see Absorption
operator
Dimensional regularization, 222, 226
Dirac equation, 63, 327
gamma matrices, 327
anticommutation relations, 328
contraction identities, 329
Dirac—Pauli representation, 336
Majorana representation, 70, 338
trace theorems, 329
plane wave solutions, 331
projection operators
energy, 332
helicity, 333
spin, 334
relativistic properties, 334, 339
spin
matrices, 328
operator, 70
summations, 141

Electric dipole approximation, 10, 19
Electron—electron scattering, 113, 125,
173
Electron—-muon scattering, 172
Electron—positron annihilation
Higgs particle production, 323-325
lepton pair production, 146, 315-320
asymmetry in, 317
W? pair production, 322
Z° production, 317-321
Electron—positron scattering, 116, 150
Electron—proton scattering, 172
Electro-weak theory: see Standard
electro-weak theory
Energy projection operators, 332
Energy-momentum conservation, 3740
External
field, 159
line, 76

Fermi coupling constant, 248, 252, 349
Fermi-Dirac statistics, 63, 72-73

Feynman amplitude, 122, 129
and gauge invariance, 144-145, 173
Feynman diagram, 55, 74-77, Chap. 7
irreducible, 215
primitively divergent, 216
proper, 212
skeleton, 215
Feynman gauge, 303
Feynman parameter, 223
Feynman rules: see Appendix B
external field, 162
intermediate vector boson theory, 244
QED, 128
standard electro-weak theory, 303
Fierz identities, 313
Forin factor, 172
Furry’s theorem, 182

Gamma matrices: see Dirac equation
Gauge
bosons, 272
self-interaction, 274, 305, 308-311
field, 263, 269, 270
fixing term, 288
transformations
electromagnetic, 3, 78-79, 84, 262,
291
of the first kind, 36
of the second kind, 3
SU(2), 268-269, 290
U(1), 270, 290
weak hypercharge, 270, 290
Ghost particle, 289
Glashow model, 275
Goldstone boson, 284
Goldstone model, 280
Gordon identity. 339
Gupta-Bleuler formalism, 87-90

Heisenberg picture, 22-24
Helicity
projection operators, 333
states, 70
Higgs
field, 289, 298
mechanism, 287
model, 284
particle, 287, 301, 322
decay, 325
mass, 302-303



production and detection, 322-325
propagator, 304
Hypercharge: see Weak hypercharge

Indefinite metric, 90

Infra-red divergence, 167, 168, 208
Interaction picture, 22-24

Inverse muon decay, 253, 259
Isospin: see Weak isospin

IVB theory, 236

Klcin—-Gordon equation, 43
Kicin--Nishina formula, 159

I.amb shift, 203

I.cft- and right-handed spinor fields, 241,
264

l.cpton number conservation, 132-133,
240, 294

|.ife-time, 14, 246

l.orentz condition, 84

l.orentz gauge, 84

l.orentz transformation of Dirac spinors,
335

Magnetic moment

of electron, 200-203, 231

of muon, 202-203
Muajorana representation, 70, 338
Metric tensor, 28
Microcausality, 52, 73, 79, 80
Minimal substitution, 77, 94
Mixed T-product, 104
Moller scattering, 113, 125, 173
Mott scattering, 162, 172, 173
Muon

decay, 247, 259

magnetic moment, 202-203

Neutrino
masses, 240, 293, 300
mixing, 293, 326
oscillations, 294
Neutrino-clectron scattering, 253, 255,
259, 311
Nocther's theorem, 35
Non-Abelian, 265
Normal product, 46, 69, 103, 105
Number representation, 9, 48, 61

Index 353

Pair annihilation: see Electron—positron
annihilation
Parity
transformation, 59
violation, 241, 259
Pauli exclusion principle, 115
Phase transformations
global, 36
local, 79
Photon
mass, 183, 185
polarization vectors, 5, 9, 85-86
self-energy, 118, 182, 213, 229
Polarization calculations for
electrons, 143, 163
photons, 21, 26, 157-159
Polarization summations for
fermions, 141
photons, 144
Polarization vectors for
massive vector bosons, 243
photons, 5, 9, 85-86
Positive and negative frequency parts, 10
Primitive divergence, 216
Proca equation, 242
Projection operators: see Dirac equation
Propagator
fermion, 73
massive scalar boson, 304
massive vector boson, 243
meson, 53
photon, 86, 90

Quarks, 294

Radiation gauge, 3
Radiative corrections, 170, Chap. 9
higher-order, 211
Lamb shift, 203
lowest-order, 198
magnetic moments, 200
soft photons, 170, 208-211, 317
standard electro-weak theory, 302
Reduction, 215
Regularization, 175
cut-off procedure, 183, 198-199, 225
dimensional, 222, 226
Renormalizability, 218
dimensional criterion for, 217, 259
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Renormalizability - -cont.
of Higgs model, 287
IVB theory, 258
QED, 211-219
_standard electro-weak theory, 294
Renormalization
charge, 186, 191, 194, 196-198, 213,

214
constants, 186, 191, 196, 198, 213,
214, 234

external line, 192, 214

mass, 188-191, 213, 225, 234

of fermion propagator, 191, 213

of photon propagator, 186, 213
Rosenbluth formula, 172
Rutherford scattering, 163

Scattering by an external field, 159, 200,
208-210, 233
Schrodinger picture, 22-24
Self-energy
electron, 117, 127, 187, 211-213, 225,
234
photon, 118, 182, 213, 229
S-matrix expansion, 98
Spin
and statistics, 72-73
operator, 70
projection operators, 334
summations, 141
Spontaneous emission, 14
Spontaneous symmetry - breaking, 280,
Chap. 13
Standard electro-weak
Chap. 14
boson masses, 300-302
Feynman rules, 303, 344
interactions, 301, 305
Lagrangian density, 295, 300
lepton masses, 292, 300
renormalizability, 294, 303
SU(2) transformations, 265, 268-269, 290

theory, 289,

Tauon
decay, 253
mass, 149

Thomson scattering, 20, 26, 157

't Hooft gauge, 288

Time-ordered product, 53, 74, 101, 104
T-product: see Time-ordered product
Trace theorems, 329

Unitary gauge, 286, 298
Units
electromagnetic, 2
natural, 96
dimensions of fields in, 97
Universality, 131, 253 .
U(1) transformations, 268, 270, 290, 291

V-A interaction, 240
Vacuum
diagram, 119
polarization, 118, 207-208, 229
state
definition, 9, 46, 68, 87
degeneracy of, 280, 291
Vertex
modification, 194, 214
part, 108

W* boson, 237, 272

decay, 254

mass, 239, 301-302

production, 239, 322
Ward identity, 197, 234
Wave function renormalization, 194
Weak hypercharge, 267
Weak isospin, 265-267, 274
Weak mixing angle, 271
Weinberg angle, 271
Weyl! field, 80
Wick’s theorem, 102

Yukawa interaction, 292

Z° boson, 257, 272
decay, 318, 321, 325, 326
mass, 258, 301-302
production, 257, 317-321






